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Abstract. This work considers the m-dissection (for m ̸≡ 0 (mod 3)) of the general quintuple
product

Q(z, q) = (z, q/z, q; q)∞(qz2, q/z2; q2)∞.

Multiple novel applications arise from this m-dissection. For example, we derive the general parti-
tion identity

DS(mn+ (m2 − 1)/24) = (−1)(m+1)/6bm(n), for all n ≥ 0,

where m ≡ 5 (mod 6) is a square-free positive integer relatively prime to 6; DS(n) is defined, for
S the set of positive integers containing no multiples of m, to be the number of partitions of n
into an even number of distinct parts from S minus the number of partitions of n into an odd
number of distinct parts from S; and bm(n) denotes the number of m-regular partitions of n. The
dissections allow us to prove a conjecture of Hirschhorn concerning the 2n-dissection of (q; q)∞, as
well as determine the pattern of the sign changes of the coefficients an of the infinite product

(q2
k−1

; q2
k−1

)∞
(qp; qp)2∞

=

∞∑
n=0

anq
n, k ≥ 1, p ≥ 5 a prime.

This covers a recent result of Bringmann et al. that corresponds to the case k = 1 and p = 5.

1. Introduction

In a recent paper [6], the authors made the following observation. Let S denote the set of positive
integers that are not multiples of 3, and let DS(n) denote the number of partitions of n into an
even number of distinct parts from S minus the number of partitions of n into an odd number of
distinct parts from S. From the known 3-dissection for (q; q)∞, it follows that

(1.1)

∞∑
n=0

DS(n)q
n = (q, q2; q3)∞ =

1

(q3, q6, q9, q18, q21, q24; q27)∞
− q

(q3, q9, q12, q15, q18, q24; q27)∞
− q2

(q6, q9, q12, q15, q18, q21; q27)∞
,

where hereafter we adopt the standard notation

(a; q)∞ :=
∞∏
n=0

(1− aqn), (a1, . . . , aj ; q)∞ := (a1; q)∞ · · · (aj ; q)∞.

This dissection implies DS(3n) → ∞ and DS(3n+1), DS(3n+2) → −∞ as n → ∞. The behavior
is very different from what happens if we replace S with N and letDN(n) be the number of partitions
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of n into an even number of distinct parts from N minus the number of partitions of n into an odd
number of distinct parts from N. Franklin’s proof of the pentagonal number theorem showed

{DN(n) | n ∈ N} = {−1, 0, 1}.

Both sides of (1.1) may be interpreted in terms of restricted partitions. For a ∈ {1, 2, 3}, let pa,9(n)
denote the number of partitions of n into parts ̸≡ ±a, 0 (mod 9). Then

DS(3n) = p4,9(n),(1.2)

DS(3n+ 1) = −p2,9(n),

DS(3n+ 2) = −p1,9(n).

A natural question is to ask if identities like (1.2) hold more widely. To investigate this problem,
we first recall that the identity (1.1) came from the 3-dissection of the infinite product (q; q)∞ and
note that (q; q)∞ is just the specialization of the quintuple product

(1.3) Q(z, q) :=
⟨z2; q⟩∞

(−z,−q/z; q)∞
,

to the case of q → q4 and z → q, where ⟨a; q⟩∞ := (a, q/a, q; q)∞, a quantity that for ease of notation
we will refer to as a (Jacobi) triple product , noting also, for later use, that ⟨a; q⟩∞ = ⟨q/a; q⟩∞.
This indicates that identities analogous to those at (1.2) may be systematically produced via the
m-dissection of quintuple products of the form Q(qj , qM ) and prompts us to consider the general
m-dissection of the general quintuple product Q(z, q). Following this leads us to discover and prove
Theorem 1.1.

Theorem 1.1. Let |q| < 1 and z ̸= 0 and m a positive integer such that 3 ∤ m.
(i) If m ≡ 1 (mod 3), then

(1.4) Q(z, q) =
m−1∑
r=0

q
1
2
r(3r−1)z3rQ

(
zmq

1
6
m(m+6r−1), qm

2
)
.

(ii) If m ≡ 2 (mod 3), then

(1.5) Q(z, q) =
m−1∑
r=0

q
1
2
r(3r−1)z3rQ

(
z−mq

1
6
m(m−6r+1), qm

2
)
.

Upon making the substitutions q → qM , z → qj one readily derives m-dissections for the quin-
tuple product Q(qj , qM ) =

(
qj , qM−j , qM ; qM

)
∞
(
qM−2j , qM+2j ; q2M

)
∞. In particular, as is noted

before, specializing (j,M) to (1, 4) one has that Q(q, q4) = (q, q3, q4; q4)∞(q2, q6; q8)∞ = (q; q)∞.
Applying the m-dissection identities (1.4) and (1.5) to this case, we are able to address the ques-
tion concerning relations between partition functions that was raised at the beginning and initiated
this work. We deduce other general partition identities, of which the following is a representative
example (recall that bm(n) denotes the number of m-regular partitions of n).

Theorem 1.2. Let m ≥ 5 be an integer relatively prime to 6 and square-free, and let S be the set
of positive integers containing no multiples of m. Define DS(n) to be the number of partitions of
n into an even number of distinct parts from S minus the number of partitions of n into an odd
number of distinct parts from S.

(i) Define r = (m2 − 1)/24. If m ≡ 1 (mod 6) set s = (m − 1)/6, and if m ≡ −1 (mod 6) set
s = (m+ 1)/6. Then

(1.6) DS(mn+ r) = (−1)sbm(n), for all n ≥ 0.
2



(ii) If m ≡ 1 (mod 6), define

(1.7) T :=

{
u(3u− 1)

2

∣∣∣∣0 ≤ u ≤ m− 1

3

}
∪
{
u(3u+ 1)

2

∣∣∣∣1 ≤ u ≤ m− 7

6

}
∪
{
m2 − 1

24

}
(mod m),

and if m ≡ −1 (mod 6), define

(1.8) T :=

{
u(3u− 1)

2

∣∣∣∣0 ≤ u ≤ m− 5

6

}
∪
{
u(3u+ 1)

2

∣∣∣∣1 ≤ u ≤ m− 2

3

}
∪
{
m2 − 1

24

}
(mod m).

If v ∈ {0, 1, 2, . . . ,m− 1} \ T , then DS(mn+ v) = 0, for all n ≥ 0.

Remark 1. In the present paper we do not consider combinatorial proofs of the various partition
identities stated. However, we state here a possible approach to finding combinatorial proofs of
all of the identities that involve a function of the form DS(n) for some set of positive integers S.
Taking (1.6) as an example, this approach involves finding an injection from the set of partitions of
mn+ r into an even number of distinct parts from S to the set of partitions of mn+ r into an odd
number of distinct parts from S (or vice versa), and then showing that there is a bijection between
the set of partitions not matched up in this way and the partitions counted by bm(n). However, we
caution that this approach may not be feasible and that other approaches may be advantageous.

As an example of a partition theoretic result derived from the m-dissection of quintuple products
we give the following example. See Subsection 3.2 for part (ii) of the example, and recall that
Pa,M (n) counts the number of partitions of n into parts ̸≡ ±a, 0 (mod M), ̸≡ M ± 2a (mod 2M).

Example 3. Let Pa,M (n) be defined as at (3.2).
(i) Let S be the set of positive integers ≡ ±1,±3,±4 (mod 10). Then

DS(5n) = P4,25(n)

DS(5n+ 1) = −P6,25(n)

DS(5n+ 2) = P9,25(n− 1)

DS(5n+ 3) = −P1,25(n)

DS(5n+ 4) = −P11,25(n− 2)

Besides its role in the study of partition identities, another interesting application arising from
Theorem 1.1 is to prove Hirschhorn’s conjecture [5] about the 2n-dissection of (q; q)∞ = Q(q, q4).
We depart slightly from the notation used by Hirschhorn.

Theorem 1.3 (Hirschhorn’s conjecture). Let n ≥ 1 be an integer and let m = 2n. Then the
m-dissection of (q; q)∞ is give by

(1.9) (q; q)∞ =
m∑
k=1

(−1)k+ϵqck(q2(2k−1)m, q8m
2−2(2k−1)m; q8m

2
)∞(q2m

2−(2k−1)m, q2m
2+(2k−1)m, q4m

2
; q4m

2
)∞,

where ϵ = 0 (respectively, 1) if n is odd (respectively, even), and for k = 1, 2, 3, . . . , 2n,

(1.10) ck =


P
(
2m−1

3 − (k − 1)
)
, if n is odd,

P
(
−2m−2

3 + (k − 1)
)
, if n is even,

where P (t) = t(3t− 1)/2.
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Example 5 includes partition identities from this dissection.
Finally, in Section 5, as another relevant implication of Theorem 1.1, we give a number of results

about periodicity of signs of coefficients in the series expansion of various infinite products, of which
the following is a prime example that covers a recent result [2, Theorem 1.1] of Bringmann et al..

Theorem 1.4. Let p > 3 be a prime. For k ≥ 1, write

(q2
k−1

; q2
k−1

)∞
(qp; qp)2∞

=

∞∑
n=0

anq
n.

Then

(1) if p ≡ 1 (mod 3), one has that

an



> 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 0 ≤ r < 4(2p+1)−6
24 or 4(5p+1)−6

24 < r ≤ p− 1,

and n ≥ L(r, k),
= 0 if n ̸≡ 3 · 2kr2 + 2k−1r (mod p),

< 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 4(2p+1)−6
24 < r < 4(5p+1)−6

24 ,

and n ≥ L(r, k),

(2) if p ≡ −1 (mod 3), one has that

an



> 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 0 ≤ r < 4(p+1)−6
24 or 4(4p+1)−6

24 < r ≤ p− 1,

and n ≥ L(r, k),
= 0 if n ̸≡ 3 · 2kr2 + 2k−1r (mod p),

< 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 4(p+1)−6
24 < r < 4(4p+1)−6

24 ,

and n ≥ L(r, k),

where L(r, k) is defined by

t1 = t1(r) = 2k+1p(p+ (6r − 1))/6 + p (mod 2k+1p2),

t2 = t2(r) = 2k+1p2 + 2kp+ 2k+1(p+ (6r − 1))p/3 (mod 2k+2p2),

L(r, k) = 7 · 2k−1p2

6
+

1

2
t1

(
t1

2k+1p2
− 1

)
+

1

2
t2

(
t2

2k+2p2
− 1

)
− 2k

48
.

In particular, when k = 1 and p = 5, the resulting conclusion yields

Corollary 1.1 (Bringmann–Han–Heim–Kane). For

(q; q)∞
(q5; q5)2∞

=

∞∑
n=0

cnq
n,

one has that

cn


> 0 if n ≡ 0 (mod 5),

= 0 if n ≡ 3, 4 (mod 5),

< 0 if n ≡ 1, 2 (mod 5).

The remainder of this work is organized as follows. In Section 2, we first review a number of
classical identities related to triple products that will be useful for proving Theorem 1.1. After these,
we give the proof of Theorem 1.1 as well as multiple useful implications of the theorem. In Section 3
we apply the m-dissection of Q(z, q) to prove Theorem 1.2 and discuss various novel examples of
partition identities following from it. The last two sections primarily discuss other applications of
Theorem 1.1 and its implications; more specifically, in Section 4 we prove a conjecture of Hirschhorn,
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namely, Theorem 1.3, from which we determine the sign of the coefficients in the series expansion
of (q; q)∞/(qm; qm)∞ for m = 2n. In Section 5 we give a proof of Theorem 1.4 and study the signs
of the coefficients coming from other infinite product classes.

2. m-Dissection of the Quintuple Product Q(z, q)

We recall two equivalent versions of the Jacobi triple product identity:

Theorem 2.1. For |q| < 1 and z ̸= 0,

(2.1)

∞∑
n=−∞

(−z)nqn
2
= ⟨zq; q2⟩∞,

and

(2.2)

∞∑
n=−∞

(−z)nqn(n−1)/2 = ⟨z; q⟩∞.

If the bilateral series in either (2.1) or (2.2) are split in to m series, each containing terms
corresponding to one of the m arithmetic progressions

{mk + r|k ∈ Z}, r = 0, 1, 2, . . . ,m− 1,

and then either (2.1) or (2.2) is used again to sum each of these m bilateral series, one arrives at
the following m-dissections.

Corollary 2.1. If |q| < 1, z ̸= 0 and m is a positive integer, then

(2.3) ⟨zq; q2⟩∞ =

m−1∑
r=0

(−z)rqr
2
〈
(−1)m+1zmqm

2+2mr; q2m
2
〉
∞
,

and

(2.4) ⟨z; q⟩∞ =
m−1∑
r=0

(−z)rq(r
2−r)/2

〈
(−1)m+1zmq(m

2−m)/2+mr; qm
2
〉
∞
.

We will sometimes use the following elementary results (for integers r and k, where 1 ≤ r < k)

(2.5) (aq−r; qk)∞ = (1− aq−r)(aqk−r; qk)∞, (aqk+r; qk)∞ =
(aqr; qk)∞
1− aqr

.

We also make use of the quintuple product identity (see [3] for an excellent survey article on the
quintuple product identity and its many proofs).

Theorem 2.2. For |q| < 1 and z ̸= 0,

(2.6)

∞∑
n=−∞

qn(3n−1)/2z3n(1− zqn) = ⟨−qz3; q3⟩∞ − z⟨−q2z3; q3⟩∞

= ⟨z; q⟩∞(qz2, q/z2; q2)∞ =
⟨z2; q⟩∞

(−z,−q/z; q)∞
.

In a previous paper [8, Theorem 3.1], the second author gave the m-dissection of Q(qt, qm) in
terms of other quintuple products, in the case where gcd(m, 6) = 1 and t is an integer such that
1 ≤ t < m/2 and gcd(t,m) = 1. With Q(z, q) as at (1.3), define

(2.7) Q(t,m) := Q(qt, qm).
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Theorem 2.3. Let m ≥ 5 be an integer relatively prime to 6 and let t ∈ {1, 2, . . . , (m− 1)/2} such
that gcd(t,m) = 1. Let Q(t,m) be as defined at (2.7).
(i)If m ≡ 1 (mod 6), then

(2.8) Q(t,m) =

m−1
3∑

r=0

(−1)rq
1
2
r(m(3r−1)+6t)Q

(
1

6
m
(
m2 +m(6r − 1) + 6t

)
,m3

)

+

m−4
3∑

r=0

(−1)rq
1
6
(m−3r−2)(m2−m(3r+1)−6t)Q

(
1

2
m
(
m2 −m(2r + 1)− 2t

)
,m3

)

+

m−7
6∑

r=0

(−1)rq
1
2
(3r+1)(mr+2t)Q

(
1

6
m(m(m− 6r − 1)− 6t),m3

)

+

m−7
6∑

r=0

(−1)
1
6
(m+6r+11)q

1
24

(m−6r−1)(m2−6mr+m−12t)Q
(
m(mr + t),m3

)
.

(ii) If m ≡ 5 (mod 6), then

(2.9) Q(t,m) =

m−5
6∑

r=0

(−1)rq
1
2
r(m(3r−1)+6t)Q

(
1

6
m
(
m2 − 6mr +m− 6t

)
,m3

)

+

m−5
6∑

r=0

(−1)
1
6
(m+6r+1)q

1
24

(m−6r−1)(m2−6mr+m−12t)Q
(
m(mr + t),m3

)

+

m−2
3∑

r=0

(−1)rq
1
2
(3r+1)(mr+2t)Q

(
1

6
m
(
m2 + 6mr +m+ 6t

)
,m3

)
+

m−5
3∑

r=0

(−1)r+1q
1
6
(m−3r−2)(m(m−3r−1)−6t)Q

(
1

2
m(m(m− 2r − 1)− 2t),m3

)
.

It was believed by the second author at the time of writing [8] that it was not possible to give
the m-dissection of the general quintuple product Q(z, q). However, while further investigating
the type of results exhibited at (1.2), it was discovered that such an m-dissection was possible for
integers m > 1 such that gcd(3,m) = 1.

The idea behind our plan to find m-dissections for Q(z, q) as at (1.3) is to first of all use (2.6)
to write it as a combination of triple products,

(2.10) Q(z, q) = ⟨−qz3; q3⟩∞ − z⟨−q2z3; q3⟩∞
then use one of the m-dissections in Corollary 2.1 to get the m-dissections of each of these triple
products, and then find ways of matching up pairs of triple products from these m-dissections in
such a way as to use (2.6) once again to combine them into quintuple products, giving the desired
results. A couple of comments are in order before starting the proof.

• The m-dissections are only for m of the form 6t− 1 or 6t+ 1, t a positive integer.
• For m of the form 6t+ 2 or 6t+ 4 we get m/2-dissections.
• For m ≡ 0 (mod 3), the m-dissection of Q(z, q) does not appear to have a straightforward
description, at least not for all such m.

We are now in a position to prove Theorem 1.1:
6



Proof of Theorem 1.1. After applying (2.4) to the two triple products on the right side of (2.10)
(with q replaced with q3 and z replaced, respectively, with −qz3 and −q2z3, and then simplifying,
one gets

(2.11) Q(z, q) =

m−1∑
r=0

qr(3r−1)/2z3r
〈
−qm(3m+6r−1)/2z3m; q3m

2
〉
∞

− z
m−1∑
r=0

qr(3r+1)/2z3r
〈
−qm(3m+6r+1)/2z3m; q3m

2
〉
∞

=:
m−1∑
r=0

ar − z
m−1∑
r=0

br.

One can clearly see at this point that if m is even, then we get an m/2 dissection of Q(z, q). How
we proceed next depends on whether m ≡ 1 (mod 3) or m ≡ 2 (mod 3). Also, for use below, it is
a straightforward, if tedious, task to showing, using (2.5) above, that if r is replaced with r+m or
r−m in br, then br is unchanged, so that below when we mention a term bs, where s = r+m, we
mean br.

(i) We now move to m ≡ 1 (mod 3). If we form the combination ar1 − zbr2 , we get

ar1 − zbr2 = q
r1(3r1−1)

2 z3r1
〈
−q

m(3m+6r1−1)
2 z3m; q3m

2
〉
− zq

r2(3r2+1)
2 z3r2

〈
−q

m(3m+6r2+1)
2 z3m; q3m

2
〉

= q
r1(3r1−1)

2 z3r1
(〈

−qm
2
(
q

m(m+6r1−1)
6 zm

)3
; q3m

2

〉
− zq

r2(3r2+1)
2

− r1(3r1−1)
2 z3(r2−r1)

〈
−q2m

2
(
q

m(−m+6r2+1)
6 zm

)3
; q3m

2

〉)
.

To turn this into a quintuple product Q, one must have

q
m(m+6r1−1)

6 zm = q
m(−m+6r2+1)

6 zm = zq
r2(3r2+1)

2
− r1(3r1−1)

2 z3(r2−r1),

and this forces r2 and r1 to satisfy that

r2 = r1 +
m− 1

3
.

After the replacement r → r+(m− 1)/3 in br, one gets (after simplifying and recalling the remark
above about br being unchanged if r is replaced with r +m if r + (m− 1)/3 > m) that

(2.12) ar − zbr+(m−1)/3 = qr(3r−1)/2z3r

×
[〈

−
(
qm(m+6r−1)/6zm

)3
qm

2
; q3m

2

〉
∞
− qm(m+6r−1)/6zm

〈
−
(
qm(m+6r−1)/6zm

)3
q2m

2
; q3m

2

〉
∞

]
= qr(3r−1)/2z3rQ(qm(m+6r−1)/6zm, qm

2
),

where the last equality follows from (2.10) (with the replacements z → qm(m+6r−1)/6zm and q →
qm

2
). Upon summing (2.12) over 0 ≤ r ≤ m− 1 completes the proof of (i).
(ii) For m ≡ 2 (mod 3), clearly the replacement r → r + (m − 1)/3 does not make sense, so

instead we recall that ⟨y; q⟩∞ = ⟨q/y; q⟩∞ and rewrite ar1 − zbr2 as

ar1 − zbr2 = q
r1(3r1−1)

2 z3r1
〈
−q

m(3m−6r1+1)
2 z−3m; q3m

2
〉
− zq

r2(3r2+1)
2 z3r2

〈
−q

m(3m−6r2−1)
2 z−3m; q3m

2
〉

= q
r1(3r1−1)

2 z3r1
(〈

−qm
2
(
q

m(m−6r1+1)
6 z−m

)3
; q3m

2

〉
− zq

r2(3r2+1)
2

− r1(3r1−1)
2 z3(r2−r1)

〈
−q2m

2
(
q

m(−m−6r2−1)
6 z−m

)3
; q3m

2

〉)
.
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This time, to convert the term inside parentheses into a quintuple product Q, one must have

q
m(m−6r1+1)

6 z−m = q
m(−m−6r2−1)

6 z−m = zq
r2(3r2+1)

2
− r1(3r1−1)

2 z3(r2−r1),

and this forces r2 and r1 to satisfy that

r2 = r1 −
m+ 1

3
.

We proceed as above and make the replacement r → r − (m + 1)/3 in br, this time recalling that
br is unchanged if r is replaced with r −m in br, to get that

(2.13) ar − zbr−(m+1)/3 = qr(3r−1)/2z3r×[〈
−qm

2
(
qm(m−6r+1)/6z−m

)3
; q3m

2

〉
∞
−qm(m−6r+1)/6z−m

〈
−q2m

2
(
qm(m−6r+1)/2z−m

)3
; q3m

2

〉
∞

]
= qr(3r−1)/2z3rQ(qm(m−6r+1)/6z−m, qm

2
),

where the last equality again follows from (2.10) (this time with the replacements q → qm
2
and

z → qm(m−6r+1)/6z−m). As above, summing (2.13) over 0 ≤ r ≤ m − 1 completes the proof of
(ii). □

Of course the parameters in the above theorem can be specialized to give a version of the
theorem in the earlier paper for the m-dissection of Q(qt, qm). We say a “version” of that previous
theorem, because the statement of the previous theorem was more complicated. Namely, the
sums corresponding to

∑m−1
r=0 in parts (i) and (ii) above were split into four sums in the previous

theorem, so as to avoid quintuple products in the m-dissections which had powers of q with negative
exponents. Simply specializing z and q in parts (i) and (ii) above almost certainly will lead to m-
dissections in which some of the resulting quintuple products will have powers of q with negative
exponents. If only positive exponents are required, then (2.5) may be employed to remove them.

However, Theorem 1.1 has two major advantages over the previous theorem. Firstly, it can be
employed to derive m-dissections when m is of the form m = 6t + 2 or of the form m = 6t + 4,
whereas the previous theorem could not provide those. Secondly, the previous theorem could only
providem-dissections of quintuple products of the form Q(qt, qm), whereas Theorem 1.1 can provide
m-dissections of quintuple products of the form Q(qt, qk), where k is independent of m.

While the initial impetus that led to the discovery of Theorem 1.1 was further investigation of
the phenomenon exhibited at (1.2), we provide other applications in later sections.

For later use we state the expansions derived making the replacements q → qM and z → qj in
(1.4) and (1.5), where M > 3 is an integer and j is a positive integer satisfying 1 ≤ j < M/2. We
also use the product form of Q(z, q) (rather than the fractional form):

Q(z, q) = (z, q/z, q; q)∞(qz2, q/z2; q2)∞.

With these substitutions we arrive at the following corollary.

Corollary 2.2. Let |q| < 1 and let M > 3 be an integer and let j is a positive integer satisfying
1 ≤ j < p/2. Let m be a positive integer such that 3 ∤ m.

(i) If m ≡ 1 (mod 3), then

(2.14)
(
qj , qM−j , qM ; qM

)
∞
(
qM−2j , qM+2j ; q2M

)
∞

=

m−1∑
r=0

qM(3r−1)r/2+3jr
(
qmM(m+6r−1)/6+jm, qm

2M−mM(m+6r−1)/6−jm, qm
2M ; qm

2M
)

∞

×
(
qm

2M+2jm+M(m+6r−1)m/3, qm
2M−2jm−mM(m+6r−1)/3; q2m

2M
)

∞.
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(ii) If m ≡ 2 (mod 3), then

(2.15)
(
qj , qM−j , qM ; qM

)
∞
(
qM−2j , qM+2j ; q2M

)
∞

=
m−1∑
r=0

qM(3r−1)r/2+3jr
(
qmM(m−6r+1)/6−jm, qm

2M−mM(m−6r+1)/6+jm, qm
2M ; qm

2M
)

∞

×
(
qm

2M+2jm−M(m−6r+1)m/3, qm
2M−2jm+mM(m−6r+1)/3; q2m

2M
)

∞.

It can be seen that all of the q-products in (2.14) and (2.15) are functions of qm, so that the sums
on the right sides of (2.14) and (2.15) give m-dissection of the q-product on the left-side. Some
components in the m-dissection may be formed by combining two or more terms in these sums.

The next two lemmas are needed as preparation for the proof of Theorem 2.4, which gives a
general formula for rewriting the m-dissection of Q(qj , qM ) stated in Corollary 2.2 in such a way
that any negative exponents of q in the expansion are removed.

Lemma 2.1 ([7]). For z = (Q1, Q2) ∈ Q2 − Z2 and qz = e2πi(Q1τ+Q2), define

K(Q1,Q2)(τ) = eπiQ2(Q1−1)q
1
2
Q1(Q1−1)(1− qz)

∞∏
n=1

(1− qzq
n)(1− q−1

z qn)(1− qn)−2

called a Klein form. Then for any

(
a b
c d

)
∈ SL2(Z),

K(Q1,Q2)

(
aτ + b

cτ + d

)
= (cτ + d)−1K(Q1a+Q2c,Q1b+Q2d)(τ).

Lemma 2.2. Let q = exp(2πiτ) with τ ∈ H. Then for any integer M ≥ 2 and 1 ≤ j < M/2, the
infinite product

qℓ(qj , qM−j , qM ; qM )∞(qM−2j , qM+2j ; q2M )∞

is modular if and only if

ℓ =
7M

24
+

1

2
j

(
j

M
− 1

)
+

1

2
(M − 2j)

(
M − 2j

2M
− 1

)
.

Proof. Following the definition of the Klein form, it is routine to verify that

qℓ(qj , qM−j , qM ; qM )∞(qM−2j , qM+2j ; q2M )∞

= K(j/M,0)(Mτ)K((M−2j)/2M,0)(2Mτ)η(Mτ)3η(2Mτ)2,

and the conclusion follows by Lemma 2.1. □

Theorem 2.4. For M ≥ 3, 1 ≤ j < M/2, and m ≡ ±1 (mod 3), one has that

(qj , qM−j , qM ; qM )∞(qM−2j , qM+2j ; q2M )∞(2.16)

=

m−1∑
r=0

(−1)s(r)qL(r)(qt1(r), qm
2M−t1(r), qm

2M ; qm
2M )∞(qt2(r), q2m

2M−t2(r); q2m
2M )∞,

where

t1(r) = mM(m± (6r − 1))/6± jm (mod m2M),

t2(r) = m2M + 2jm±M(m± (6r − 1))m/3 (mod 2m2M),

L(r) = 7m2M

24
+

1

2
t1(r)

(
t1(r)

m2M
− 1

)
+

1

2
t2(r)

(
t2(r)

2m2M
− 1

)
9



−
(
7M

24
+

1

2
j

(
j

M
− 1

)
+

1

2
(M − 2j)

(
M − 2j

2M
− 1

))
,

and if m ≡ 1 (mod 3), then

(2.17) s(r) =


0, if r ≤ (2m+1)M−6j

6M ,

1, if (2m+1)M−6j
6M < r ≤ (5m+1)M−6j

6M ,

2, if r > (5m+1)M−6j
6M ,

and if m ≡ −1 (mod 3), then

(2.18) s(r) =


0, if r ≤ (m+1)M−6j

6M ,

1, if (m+1)M−6j
6M < r ≤ (4m+1)M−6j

6M ,

2, if r > (4m+1)M−6j
6M .

Proof. By Lemma 2.2 for m ≡ ±1 (mod 3), we have that for q = exp(2πiτ),

qℓ
(
qj , qM−j , qM ; qM

)
∞
(
qM−2j , qM+2j ; q2M

)
∞

= qℓ
m−1∑
r=0

qM(3r−1)r/2+3jr
(
qmM(m±(6r−1))/6±jm, qm

2M−mM(m±(6r−1))/6∓jm, qm
2M ; qm

2M
)

∞

×
(
qm

2M+2jm±p(m±(6r−1))m/3, qm
2M−2jm∓mM(m±(6r−1))/3; q2m

2M
)

∞,

where

ℓ =
7M

24
+

1

2
j

(
j

M
− 1

)
+

1

2
(M − 2j)

(
M − 2j

2M
− 1

)
,

is modular. Notice that each of the components(
qmM(m±(6r−1))/6±jm, qm

2M−mM(m±(6r−1))/6∓jm, qm
2M ; qm

2M
)

∞

×
(
qm

2M+2jm±M(m±(6r−1))m/3, qm
2M−2jm∓mM(m±(6r−1))/3; q2m

2M
)

∞

is uniquely determined by an r = 0, . . . ,m− 1 as a part of the m-dissection of the infinite product(
qj , qM−j , qM ; qM

)
∞
(
qM−2j , qM+2j ; q2M

)
∞ corresponding to some residue class, and recall that

components of the m-dissection of a modular form remain modular. Also notice that

|mM(m± (6r − 1))/6± jm| < 2m2M,

|m2M + 2jm±M(m± (6r − 1))m/3| < 4m2M,

so these imply that the product(
qmM(m±(6r−1))/6±jm, qm

2M−mM(m±(6r−1))/6∓jm, qm
2M ; qm

2M
)

∞

×
(
qm

2M+2jm±M(m±(6r−1))m/3, qm
2M−2jm∓mM(m±(6r−1))/3; q2m

2M
)

∞

differs from the product

(qt1 , qm
2M−t1 , qm

2M ; qm
2M )∞(qt2 , q2m

2M−t2 ; q2m
2M )∞

by some power of q, where t1 = t1(r) and t2 = t2(r). Thus, by Lemma 2.2 one can tell that

qℓ+M(3r−1)r/2+3jr
(
qmM(m±(6r−1))/6±jm, qm

2M−mM(m±(6r−1))/6∓jm, qm
2M ; qm

2M
)

∞

×
(
qm

2M+2jm±M(m±(6r−1))m/3, qm
2M−2jm∓mM(m±(6r−1))/3; q2m

2M
)

∞

10



must be modular. Then the modularity of the infinite product and Lemma 2.2 once again force it
to be of the form

(−1)sqL(qt1 , qm
2M−t1 , qm

2M ; qm
2M )∞(qt2 , q2m

2M−t2 ; q2m
2M )∞

with

L =
7m2M

24
+

1

2
t1

(
t1

m2M
− 1

)
+

1

2
t2

(
t2

2m2M
− 1

)
for some s = s(r), whence,

(qj , qM−j , qM ; qM )∞(qM−2j , qM+2j ; q2M )∞

=
m−1∑
r=0

(−1)s(r)qL(r)(qt1(r), qm
2M−t1(r), qm

2M ; qm
2M )∞(qt2(r), q2m

2M−t2(r); q2m
2M )∞

with

L(r) = 7m2M

24
+

1

2
t1

(
t1

m2M
− 1

)
+

1

2
t2

(
t2

2m2M
− 1

)
−
(
7M

24
+

1

2
j

(
j

M
− 1

)
+

1

2
(M − 2j)

(
M − 2j

2M
− 1

))
.

As regards the formulae for s at (2.17) and (2.18), it can be seen from (2.5) that converting the
left side of (2.16) into the right side involves transformations of the form

(q−r; qk)∞(qk+r; qk)∞ = (1− q−r)(qk−r; qk)∞
(qr; qk)∞
1− qr

= −q−r(qr; qk)∞(qk−r; qk)∞,

and thus that a factor of (−1) is introduced with each such operation, so that s is the number of
negative exponents in the initial product on the left side of (2.16). We prove (2.17) only, as the
argument for (2.18) is similar. On the left side of (2.16) we consider the + case (so each ± becomes
+ and each ∓ becomes −) and it is easily seen that three of the five exponents are positive for all
values of r and the two that are possibly negative for some values of r are

−2jm+m2M − 1

3
mM(m+ 6r − 1), −jm+m2M − 1

6
mM(m+ 6r − 1).

Inequalities (2.17) simply reflect when none, one or both of these quantities are negative. □

In the remainder of this section, we briefly discuss the m-dissection for the infinite product
(q; q)∞ that can be derived from Theorem 1.1.

In [8, Theorem 2.1.], the second author proved the m-dissection for (q; q)∞ in the next theorem.
Proofs were previously given by Evans [4] and Ramanathan [9], but the method of proof in [8] was
essentially that given by Berndt [1, Theorem 12.1, page 274]. Our formulation is slightly different.

Theorem 2.5. Let |q| < 1 and Q(z, q) be as at (1.3).
(i) If m is a positive integer of the form 6t+ 1, then

(2.19) (q; q)∞ = (−1)(m−1)/6q(m
2−1)/24

(
qm

2
; qm

2
)

∞

+

m−1
3∑

u=0

(−1)uqu(3u−1)/2Q
(
−qm(m+6u−1)/6; qm

2
)
+

m−7
6∑

u=1

(−1)uqu(3u+1)/2Q
(
−qm(m−6u−1)/6; qm

2
)
.

(ii) If m is a positive integer of the form 6t− 1, then

(2.20) (q; q)∞ = (−1)(m+1)/6q(m
2−1)/24

(
qm

2
; qm

2
)

∞
11



+

m−5
6∑

u=0

(−1)uqu(3u−1)/2Q
(
−qm(m−6u+1)/6; qm

2
)
+

m−2
3∑

u=1

(−1)uqu(3u+1)/2Q
(
−qm(m+6u+1)/6; qm

2
)
.

In [8], the above theorem was proved independently of the proof given in the same paper of
the m-dissection of Q(z, q). This overlooked the elementary observation (noticed while conducting
investigations for the present paper) that

(2.21) Q(−1, q) = 2(q; q)∞.

This leads to another proof of Theorem 2.5, after setting z = −1 in Theorem 1.1 (although each
term in the expansions (2.19) and (2.20) appear twice, so that it is necessary to divide both sides
by 2 to finally obtain Theorem 2.5).

We return now to the strategy mentioned at (2.21) of proving Theorem 2.5 by letting z → −1
in Theorem 1.1. The advantage of this method of proof is that it also leads to expansions similar
to those in Theorem 2.5 when m has either of the forms m = 6t + 2 or m = 6t + 4, for some
non-negative integer t.

We note that this extends the result of Evans [4], Ramanathan [9] and Berndt [1], who proved
the m-dissection of (q; q)∞ in terms of quintuple products, but limited to odd m relatively prime
to 3.

Theorem 2.6. Let |q| < 1 and Q(z, q) be as at (1.3).
If m is a positive integer of the form 6t+ 2, then

(2.22) (q; q)∞

=

m−2
6∑

u=0

(−1)uqu(3u−1)/2Q
(
qm(m−6u+1)/6; qm

2
)
+

m−2
3∑

u=1

(−1)uqu(3u+1)/2Q
(
qm(m+6u+1)/6; qm

2
)
.

If m is a positive integer of the form 6t+ 4, then

(2.23) (q; q)∞

=

m−1
3∑

u=0

(−1)uqu(3u−1)/2Q
(
qm(m+6u−1)/6; qm

2
)
+

m−4
6∑

u=1

(−1)uqu(3u+1)/2Q
(
qm(m−6u−1)/6; qm

2
)
.

Proof. The method of proof is similar to the proof described for Theorem 2.5 (letting z → −1 in
Theorem 1.1), except that we take m to be even instead of odd. The details are omitted. □

We note that, unlike Theorem 2.5, Theorem 2.6 leads to m/2 dissections, not m-dissections.
Most of the implications of Theorem 2.6 for m = 2jm′, with j a positive integer and m′ > 1
odd, are actually disguised versions of results that follow from Theorem 2.5 applied to m′, via
some elementary q-product manipulations. However, there is a family of results that follow from
Theorem 2.6 that do not arise in this way. This is the case m = 2j for some positive integer j.
Section 4 addresses this case and proves Hirschhorn’s conjecture for the 2n-dissection of (q; q)∞.

3. Partition identities from the m-dissection of (q; q)∞ and other quintuple
products

For use in this section we define two quite general partition functions. Firstly, for any set of
positive integers S, define

(3.1) DS(n) := the number of partitions of n into an even number of distinct parts from S

minus the number of partitions of n into an odd number of distinct parts from S.

12



Secondly, for a positive integer M ≥ 5 and a positive integer a < M/2 define, for any positive
integer n,

(3.2) Pa,M (n) :=

the number of partitions of n into parts ̸≡ ±a, 0 (mod M), ̸≡ M ± 2a (mod 2M).

3.1. Partition identities from the m-dissection of (q; q)∞. Before proving Theorem 1.2, we
need the following number-theoretic result.

Lemma 3.1. When m ≡ 1 (mod 6), there is no 0 ≤ u ≤ m−1
3 such that

u(3u− 1)

2
≡ m2 − 1

24
(mod m)

if and only if m is square free. Likewise, there is no 0 ≤ u ≤ m−7
6 such that

u(3u+ 1)

2
≡ m2 − 1

24
(mod m)

Proof. Notice that the congruences can be rewritten as

(6u∓ 1)2 ≡ m2 − 1 (mod 24m),

so since m ≡ 1 (mod 6), this congruence is solvable for u if and only if

(6u∓ 1)2 ≡ 0 (mod m)

is solvable for u. If m is square free, one must have 6u± 1 ≡ 0 (mod m), but in the case regarding
6u − 1 this forces 6u − 1 = m under the assumption that 0 ≤ u ≤ m−1

3 , which contradicts the

assumption of m ≡ 1 (mod 6). The case regarding 6u + 1 is impossible given that 0 ≤ u ≤ m−7
6 .

The sufficiency of m being square free follows.
On the other hand, assume that m =

∏
pep is not square free, i.e., ep ≥ 2 for some p|m. Notice

that any prime factor p ≥ 5, and so

1, 5 ≤ 2m− 1∏
p|m p⌊

ep+1

2
⌋
,

m− 6∏
p|m p⌊

ep+1

2
⌋
,

since at least one of ⌊ ep+1
2 ⌋ is strictly less than ep, and p ≥ 5. Thus, there are integers

k− ≤ 2m− 1∏
p|m p⌊

ep+1

2
⌋
and k+ ≤ m− 6∏

p|m p⌊
ep+1

2
⌋

such that k∓
∏
p|m

p⌊
ep+1

2
⌋

± 1 ≡ 0 (mod 6),

since
∏

p|m p⌊
ep+1

2
⌋ ≡ 1, 5 (mod 6). Set u∓ = 1

6

(
k∓
∏

p|m p⌊
ep+1

2
⌋ ± 1

)
. It is clear by the fact that

k∓ ≤ 2m− 1∏
p|m p⌊

ep+1

2
⌋
,

m− 6∏
p|m p⌊

ep+1

2
⌋

that 0 ≤ u− ≤ m−1
3 , and 0 ≤ u+ ≤ m−7

6 , and

(6u∓ 1)2 = k2∓
∏
p|m

p2⌊
ep+1

2
⌋ ≡ 0 (mod m).

Counterparts of the case m ≡ −1 (mod 6) also hold and can be justified by the same argument.
As such, we omit the details. □
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As a consequence of Theorem 2.5 and Lemma 3.1, we obtain the general partition identities in
Theorem 1.2 mentioned in the introduction, which have something of the flavour of (1.2). Recall
that bm(n) is the number of m-regular partitions of n (partitions with no parts ≡ 0 (mod m)). In
what follows, we give a proof of Theorem 1.2, and Since some of the statements in Theorem 1.2 are
slightly complicated, we restate it here for the benefit of the reader.

Theorem 1.2. Let m ≥ 5 be an integer relatively prime to 6 and square-free, and let S be the set
of positive integers containing no multiples of m. Define DS(n) to be number of partitions of n into
an even number of distinct parts from S minus the number of partitions of n into an odd number
of distinct parts from S.

(i) Define r = (m2 − 1)/24. If m ≡ 1 (mod 6) set s = (m − 1)/6 and if m ≡ −1 (mod 6) set
s = (m+ 1)/6. Then

(1.6) DS(mn+ r) = (−1)sbm(n), for all n ≥ 0.

(ii) If m ≡ 1 (mod 6), define

(1.7) T :=

{
u(3u− 1)

2

∣∣∣∣0 ≤ u ≤ m− 1

3

}
∪
{
u(3u+ 1)

2

∣∣∣∣1 ≤ u ≤ m− 7

6

}
∪
{
m2 − 1

24

}
(mod m),

and if m ≡ 1 (mod 6), define

(1.8) T :=

{
u(3u− 1)

2

∣∣∣∣0 ≤ u ≤ m− 5

6

}
∪
{
u(3u+ 1)

2

∣∣∣∣1 ≤ u ≤ m− 2

3

}
∪
{
m2 − 1

24

}
(mod m).

If v ∈ {0, 1, 2, . . . ,m− 1} \ T , then DS(mn+ v) = 0, for all n ≥ 0.

Proof. (i) Dividing both sides of (2.19) or (2.20) by (qm; qm), the left side becomes

(3.3) (q, q2, . . . , qm−1; qm)∞ =

∞∑
n=0

DS(n)q
n.

On the right side of each equation one has by Lemma 3.1 that the equations (m2 − 1)/24 =
u(3u − 1)/2 and (m2 − 1)/24 = u(3u + 1)/2 have no solutions in integers for u in the given
summation ranges, so that with r and s as given,

(3.4) (−1)sqr

(
qm

2
; qm

2
)

∞

(qm; qm)∞
=

∞∑
n=0

DS(mn+ r)qmn+r.

However, after cancelling a factor of qr both sides and then making the replacement q → q1/m,
equation (3.4) becomes

∞∑
n=0

DS(mn+ r)qn = (−1)s
(qm; qm)∞
(q; q)∞

= (−1)s
∞∑
n=0

bm(n)qn.

(ii) This is immediate, since it is clear from the right sides of (2.19) and (2.20) that for such an
integer v, the coefficient of qmn+v is equal to 0 for all positive integers n. □

Example 1. Take m = 7, so s = (7 − 1)/6 = 1 and r = (72 − 1)/24 = 2. Let S be the set of
positive integers which are not multiples of 7.

(i) If we take n = 13, then mn + r = 7(13) + 2 = 93. There are 44530 partitions of 93 into an
even number of distinct parts from S, and there are 44620 partitions of 93 into an odd number of
distinct parts from S. Hence

DS(93) = 44530− 44620 = (−1)190,

in agreement with (1.6), since b7(13) = 90.
14



(ii) On the other hand, if we take n = 13 and v = 3, then mn + v = 7(13) + 3 = 94. There
are 48239 partitions of 94 into an even number of distinct parts from S, and there are also 48239
partitions of 94 into an odd number of distinct parts from S. Hence

DS(94) = 48239− 48239 = 0,

in agreement with part (ii) of Theorem 1.2, since one easily computes from (1.7) that T = {0, 1, 2, 5}
and v = 3 ̸∈ T .

Partition interpretations of the other terms in the m-dissections are not so straightforward, as
they involve partitions in which some parts occur in two colours. We illustrate this with an example.

Example 2. Let S denote the set of positive integers with no multiples of 5. By (2.20),

(q; q)∞ = −q
(
q25; q25

)
∞

+
(
−q5,−q20, q25; q25

)
∞
(
q15, q35; q50

)
∞ − q2

(
−q10,−q15, q25; q25

)
∞
(
q5, q45; q50

)
∞

=⇒ (q; q)∞
(q5; q5)∞

= −q

(
q25; q25

)
∞

(q5; q5)∞

+

(
−q5,−q20, q25; q25

)
∞
(
q15, q35; q50

)
∞

(q5; q5)∞
− q2

(
−q10,−q15, q25; q25

)
∞
(
q5, q45; q50

)
∞

(q5; q5)∞

=⇒ (q; q)∞
(q5; q5)∞

=
∞∑
n=0

DS(n)q
n = −q

(
q25; q25

)
∞

(q5; q5)∞
+

1

(q5, q20; q25)2 ∞
− q2

(q10, q15; q25)2 ∞
,

where the last equality follows from elementary q-product manipulation. By proceeding as in earlier
examples (comparing components with powers of q in the same arithmetic progressions modulo 5

on both sides of the last equation and then making the replacement q → q1/5, one gets that

∞∑
n=0

DS(5n)q
n =

1

(q, q4; q5)2 ∞
,

∞∑
n=0

DS(5n+ 1)qn = −
(
q5; q5

)
∞

(q; q)∞
,

∞∑
n=0

DS(5n+ 2)qn = − 1

(q2, q3; q5)2 ∞
,

∞∑
n=0

DS(5n+ 3)qn =
∞∑
n=0

DS(5n+ 4)qn = 0.

Recall that b5(n) is the number of 5-regular partitions of n, and for a ∈ {1, 2}, let pa;5(n) denote
the number of partitions of n into parts ≡ ±a (mod 5), where parts come in two colours. Then the
series-product identities above have the following partition interpretations:

• DS(5n) = p1;5(n);
• DS(5n+ 1) = −b5(n);
• DS(5n+ 2) = −p2;5(n);
• for any integer of the form 5n + 3 or 5n + 4, the number of partitions it has into an even
number of distinct parts from S is the same as the number of partitions it has into an odd
number of distinct parts from S.

To give some specific numerical examples, 75 = 5(15) has 6140 partitions into an even number
of distinct parts from S and 5944 partitions into an odd number of distinct parts from S, so that
DS(75) = 6140− 5944 = 196, in agreement with p1;5(15) = 196.

For a second example, 76 = 5(15) + 1 has 6506 partitions into an even number of distinct
parts from S and 6633 partitions into an odd number of distinct parts from S, so that DS(76) =
6506− 6633 = −127 = −b5(15).
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Lastly, 78 = 5(15)+ 3 has 7755 partitions into an even number of distinct parts from S and also
7755 partitions into an odd number of distinct parts from S, so that DS(78) = 7755− 7755 = 0, in
agreement with the fourth entry in the bullet list above.

Remark 2. One can similarly derive coloured partition identities from quintuple product expansions
of (q; q)∞ for other values of m of the form m = 6t± 1 in Theorem 2.5, but they are not quite so
straightforward, in that just some (not all) of the various arithmetic progressions have parts that
come in two colours.

3.2. Partition identities from the m-dissection of other quintuple products. We next
consider some partition implications of other quintuple products, as stated in Corollary 2.2.

Example 3. Let Pa,M (n) be as defined at (3.2).
(i) Let S be the set of positive integers ≡ ±1,±3,±4 (mod 10). Then

DS(5n) = P4,25(n)(3.5)

DS(5n+ 1) = −P6,25(n)

DS(5n+ 2) = P9,25(n− 1)

DS(5n+ 3) = −P1,25(n)

DS(5n+ 4) = −P11,25(n− 2)

(ii) Let S′ be the set of positive integers ≡ ±1,±5,±6 (mod 14). Then

DS′(7n) = P8,49(n)(3.6)

DS′(7n+ 1) = −P6,49(n)

DS′(7n+ 2) = −P20,49(n− 4)

DS′(7n+ 3) = P15,49(n− 1)

DS′(7n+ 4) = P1,49(n− 1)

DS′(7n+ 5) = −P13,49(n)

DS′(7n+ 6) = P22,49(n− 5)

(3.7)

Proof. (i) With the substitutions p = m = 5 and j = 1 in (2.14), one gets that(
q, q4, q5; q5

)
∞
(
q3, q7; q10

)
∞ =

(
q20, q105, q125; q125

)
∞
(
q85, q165; q250

)
∞

+ q122
(

1

q80
, q205, q125; q125

)
∞

(
1

q35
, q285; q250

)
∞ + q69

(
1

q55
, q180, q125; q125

)
∞
(
q15, q235; q250

)
∞

+ q31
(

1

q30
, q155, q125; q125

)
∞
(
q65, q185; q250

)
∞ + q8

(
1

q5
, q130, q125; q125

)
∞
(
q115, q135; q250

)
∞

=
(
q20, q105, q125; q125

)
∞
(
q85, q165; q250

)
∞ + q7

(
q45, q80, q125; q125

)
∞
(
q35, q215; q250

)
∞

− q14
(
q55, q70, q125; q125

)
∞
(
q15, q235; q250

)
∞ − q

(
q30, q95, q125; q125

)
∞
(
q65, q185; q250

)
∞

− q3
(
q5, q120, q125; q125

)
∞
(
q115, q135; q250

)
∞,

where the last equality follows from using (2.5). If we now divide both sides by
(
q5; q5

)
∞, the left

side becomes (
q, q4; q5

)
∞
(
q3, q7; q10

)
∞ =

(
q, q3, q4, q6, q7, q9; q10

)
∞ =

∞∑
n=0

DS(n)q
n,
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where S is as defined at (i) above. If we consider, for example, powers of q with exponent ≡ 4
(mod 5) on the resulting right side, we get

∞∑
n=0

DS(5n+ 4)q5n+4 = −q14
(
q55, q70, q125; q125

)
∞
(
q15, q235; q250

)
∞

(q5; q5)∞

=⇒
∞∑
n=0

DS(5n+ 4)qn = −q2
(
q11, q14, q25; q25

)
∞
(
q3, q47; q50

)
∞

(q; q)∞

= −q2
∞∑
n=0

P11,3;25(n)q
n,

and the last assertion at (3.5) now follows. The proofs of the other parts of (3.5) follow similarly,
and are omitted.

(ii) Likewise, with the substitutions p = m = 7 and j = 1 in (2.15), one obtains(
q, q6, q7; q7

)
∞
(
q5, q9; q14

)
∞ =

(
q56, q287, q343; q343

)
∞
(
q231, q455; q686

)
∞

+q375
(

1

q7
, q350, q343; q343

)
∞

(
1

q357
, q1043; q686

)
∞+q260

(
q42, q301, q343; q343

)
∞

(
1

q259
, q945; q686

)
∞

+ q166
(
q91, q252, q343; q343

)
∞

(
1

q161
, q847; q686

)
∞ + q93

(
q140, q203, q343; q343

)
∞

(
1

q63
, q749; q686

)
∞

+ q41
(
q154, q189, q343; q343

)
∞
(
q35, q651; q686

)
∞ + q10

(
q105, q238, q343; q343

)
∞
(
q133, q553; q686

)
∞

=
(
q56, q287, q343; q343

)
∞
(
q231, q455; q686

)
∞ + q11

(
q7, q336, q343; q343

)
∞
(
q329, q357; q686

)
∞

− q
(
q42, q301, q343; q343

)
∞
(
q259, q427; q686

)
∞ − q5

(
q91, q252, q343; q343

)
∞
(
q161, q525; q686

)
∞

− q30
(
q140, q203, q343; q343

)
∞
(
q63, q623; q686

)
∞ + q41

(
q154, q189, q343; q343

)
∞
(
q35, q651; q686

)
∞

+ q10
(
q105, q238, q343; q343

)
∞
(
q133, q553; q686

)
∞,

where once again the last equality follows from using (2.5). The remainder of the proof mirrors
the methods used in part (i), so the details are omitted. □

The second situation we consider is where m = pp′, where p is the prime occurring in Corol-
lary 2.2, and p′ ̸= 2, 3 is a prime different from p. We approach this situation with examples, by
way of introducing the general situation.

Example 4. Let Pa,M (n) be as defined at (3.2).
(i) Let S be the set of positive integers ≡ ±1,±3,±4, 0, 5 (mod 10), but ̸≡ 0 (mod 35). Then

DS(35n+ 6) = −P56,175(n− 6)(3.8)

DS(35n+ 13) = P49,175(n− 3)

DS(35n+ 20) = −P21,175(n)

DS(35n+ 27) = P84,175(n− 25)

DS(35n+ 34) = P14,175(n− 1)

DS(35n+ r) = 0, r ≡ 2, 4, 5 (mod 7)

(ii) Let S′ be the set of positive integers ≡ ±1,±5,±6, 0, 7 (mod 14), but ̸≡ 0 (mod 35). Then

DS′(35n+ 3) = −P15,245(n− 4)(3.9)

DS′(35n+ 8) = P55,245(n− 1)

DS′(35n+ 13) = −P120,245(n− 38)
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DS′(35n+ 18) = −P50,245(n)

DS′(35n+ 23) = P20,245(n− 2)

DS′(35n+ 28) = P90,245(n− 14)

DS′(35n+ 33) = −P85,245(n− 11)

DS′(35n+ r) = 0, r ≡ 2, 4 (mod 5)

Remark 3. (1) Note that the first five statements at (3.8) collectively cover DS(7n+ 6), while
the first seven statements at (3.9) collectively cover DS′(5n+ 3).

(2) In regard to the last items in (3.8) and (3.9), recall that DS(35n + r) = 0 (and likewise
DS′(35n + r) = 0) means that the number of partitions of 35n + r composed of an even
number of distinct parts from S is equal to the number of partitions of 35n + r composed
of an odd number of distinct parts from S.

Proof. (i) Set p = 5, j = 1 and m = 35 in (2.15) and then divide both sides by (q35; q35)∞, so
that the left side becomes the generating function for the sequence {DS(n)}. Upon computing the
exponents p(3r − 1)r/2 + 3jr modulo 35, one concludes that{

5

2
(3r − 1)r + 3r|r = 0, 1, . . . 34

}
(mod 35) = {0, 8, 31, 34, 17, 15, 28, 21, 29, 17, 20,

3, 1, 14, 7, 15, 3, 6, 24, 22, 0, 28, 1, 24, 27, 10, 8, 21, 14, 22, 10, 13, 31, 29, 7}.

From this list one notices two things. Firstly, the list contains none of the integers 2, 4, 5 (mod 7),
which means no powers of q with such exponents are present on the right side (this is unchanged
after dividing through by (q35; q35)∞), thus proving the final statement at (3.8). Secondly, the
numbers which occur once in this list are 6, 13, 20, 27 and 34, so we consider only terms in the
expansion resulting from (2.15) with powers of q in the arithmetic progressions 6, 13, 20, 27, 34
(mod 35). The values of r which give rise to these five numbers are, respectively, r = 17, 31, 10, 24
and 3. We compute explicitly only the terms in the sum on the right side (2.15) corresponding to
these r-values, and ignore the others. This yields

(
q, q4, q5; q5

)
∞
(
q3, q7; q10

)
∞ = · · ·+q7223

(
1

q4410
, q10535, q6125; q6125

)
∞

(
1

q2695
, q14945; q12250

)
∞

+ q4332
(

1

q3185
, q9310, q6125; q6125

)
∞

(
1

q245
, q12495; q12250

)
∞

+ q2176
(

1

q1960
, q8085, q6125; q6125

)
∞
(
q2205, q10045; q12250

)
∞

+ q755
(

1

q735
, q6860, q6125; q6125

)
∞
(
q4655, q7595; q12250

)
∞

+ q69
(
q490, q5635, q6125; q6125

)
∞
(
q5145, q7105; q12250

)
∞ + . . .

= · · ·+ q118
(
q1715, q4410, q6125; q6125

)
∞
(
q2695, q9555; q12250

)
∞

+ q902
(
q2940, q3185, q6125; q6125

)
∞
(
q245, q12005; q12250

)
∞

− q216
(
q1960, q4165, q6125; q6125

)
∞
(
q2205, q10045; q12250

)
∞

− q20
(
q735, q5390, q6125; q6125

)
∞
(
q4655, q7595; q12250

)
∞

+ q69
(
q490, q5635, q6125; q6125

)
∞
(
q5145, q7105; q12250

)
∞ + . . . ,

where, as previously, (2.5) has been used to get the second equality.
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As mentioned above, after dividing both sides by (q35; q35)∞, the left side becomes the generating
function for DS(n). Since 118 ≡ 13 (mod 35), one gets that

∞∑
n=0

DS(35n+ 13)q35n+13 =
q118

(
q1715, q4410, q6125; q6125

)
∞
(
q2695, q9555; q12250

)
∞

(q35; q35)∞

=⇒
∞∑
n=0

DS(35n+ 13)qn = q3
(
q49, q126, q175; q175

)
∞
(
q77, q273; q350

)
∞

(q; q)∞
,

leading to the second statement at (3.8). The proofs of the remaining statements are similar, and
so are omitted.

(ii) The starting point here is to set p = 7, j = 1 and m = 35 in (2.15) and then again divide
both sides by (q35; q35)∞, so that the left side becomes the generating function for the sequence
{DS′(n)}. Upon computing the exponents p(3r − 1)r/2 + 3jr modulo 35, one obtains{

7

2
(3r − 1)r + 3r|r = 0, 1, . . . 34

}
(mod 35) = {0, 10, 6, 23, 26, 15, 25, 21, 3, 6, 30, 5, 1, 18,

21, 10, 20, 16, 33, 1, 25, 0, 31, 13, 16, 5, 15, 11, 28, 31, 20, 30, 26, 8, 11}.

This time one sees that the missing integers are those ≡ 2, 4 (mod 5), and those that occur exactly
once are 3, 8, 13, 18, 23, 28 and 33. The rest of the proof parallels the proof of part (i), and so is
omitted. □

4. Hirschhorn’s conjecture on 2n-dissection of (q; q)∞

In [5, page 332], Hirschhorn stated a conjecture for the 2n-dissection of (q; q)∞. A proof by
Gayan and Sarmah [10] of this conjecture by a different method has recently been published online.

As an application of Theorem 2.4, we provide a proof of Hirschhorn’s conjecture, i.e., Theo-
rem 1.3. Our proof is different from that given in [10]. For the reader’s convenience, we restate the
conjecture below before giving its proof.

Theorem 1.3. (Hirschhorn’s conjecture)Let n ≥ 1 be an integer and let m = 2n. Then the
m-dissection of (q; q)∞ is give by

(1.9) (q; q)∞ =
m∑
k=1

(−1)k+ϵqck(q2(2k−1)m, q8m
2−2(2k−1)m; q8m

2
)∞(q2m

2−(2k−1)m, q2m
2+(2k−1)m, q4m

2
; q4m

2
)∞,

where ϵ = 0 (respectively, 1) if n is odd (respectively, even), and for k = 1, 2, 3, . . . , 2n,

(1.10) ck =


P
(
2m−1

3 − (k − 1)
)
, if n is odd,

P
(
−2m−2

3 + (k − 1)
)
, if n is even,

where P (t) = t(3t− 1)/2.

Proof. If n is odd, then m = 2n = 3t − 1, for some integer t, and likewise if n is even, then
m = 2n = 3t + 1, for some integer t. Since (q; q)∞ = (q, q3, q4; q4)∞(q2, q6; q8)∞, we will let
j = 1 and p = 4 in Corollary 2.2 and use the two cases m ≡ 1 (mod 3) and m ≡ −1 (mod 3)
to get initial m-dissections of (q; q)∞. These dissection will contain products with some negative
exponents, so the next step is to use Theorem 2.4 to remove these negative exponents. Finally,
a change in summation variable is used to show that the form of the m-dissection obtained after
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using Theorem 2.4 is in fact identical to that on the right side of (1.9). We will give the details for
the case m ≡ −1 (mod 3), and sketch the proof (which is similar) in the case m ≡ 1 (mod 3).

As indicated above, we set p = 4 and j = 1 in (2.15) to get

(4.1) (q; q)∞ =
m−1∑
r=0

qr(6r+1)
(
qm(2m−12r−1)/3, qm(10m+12r+1)/3, q4m

2
; q4m

2
)

∞

×
(
q2m(8m−12r−1)/3, q2m(4m+12r+1)/3; q8m

2
)

∞.

There are exactly two exponents in any particular term that may be negative for some values of r,
namely m(2m−12r−1)/3 and 2m(8m−12r−1)/3. Recall that the number of negative exponents
(thus either zero, one or two) gives the values of the parameter s in (2.16), and also possibly changes
the value of t1 and/or t2. To use Theorem 2.4 we divide the summation interval 0 ≤ r ≤ m−1 into
three sub-intervals in which none, exactly one or exactly two of these exponents are negative. It is
easy to see from the formula for these two exponents that these 3 sub-intervals are, respectively,

0 ≤ r <
2m− 1

12
,

2m− 1

12
< r <

8m− 1

12
,

8m− 1

12
< r ≤ m− 1.

In the first interval, both exponents are positive, so s = 0. From (4.1) and Theorem 2.4 one gets

t1 =
1

3
m(2m− 12r − 1), t2 =

2

3
m(4m+ 12r + 1),

so that L = r(6r + 1). As expected, since all exponents are positive there is no change effected
by Theorem 2.4. Upon comparing corresponding exponents in the q-products in (1.9) and (4.1), it
can be seen that if the r-th term in (4.1) corresponds to the k-th term in (1.9), for some value of
k, one must have

1

3
m(2m− 12r − 1) = 2m2 − (2k − 1)m,

or r =
1

6
(3k − 2m− 2),

or k =
2(m+ 1)

3
+ 2r.

Observe that 2(m+1)/3 is even, and that the largest integer less than (2m− 1)/12 is (2m− 4)/12.
Substituting this value in for r in the expression for k above, one gets k = m. Thus, the set of k-
values corresponding to r-values in the interval [0, (2m−4)/12] are the even integers in the interval
[2(m+1)/3,m]. Further, a somewhat tedious check shows that after making the replacement for r
indicated by the second equation above in the r-th term in (4.1), that it has the form of the k-term
in (1.9) (since n is odd, ϵ = 0, and since k is even, (−1)k+ϵ = 1). Thus the part of the sum at (4.1)
corresponding to 0 ≤ r < (2m − 1)/12 is equal to the part of the sum at (1.9) over even k in the
interval [2(m+ 1)/3,m].

We next consider r-values in the second interval, (2m−1)/12 < r < (8m−1)/12. In this interval
m(−1 + 2m− 12r)/3 < 0, so s = 1 and

t1 =
1

3
m(2m− 12r − 1) + 4m2, t2 =

2

3
m(4m+ 12r + 1),

so that L = 1
3m(2m− 12r − 1) + 6r2 + r, and the r-th term in (4.1) becomes

(4.2) − qm(2m−12r−1)/3+6r2+r(
qm(14m−12r−1)/3, qm(−2m+12r+1)/3, q4m

2
; q4m

2
)

∞

(
q2m(8m−12r−1)/3, q2m(4m+12r+1)/3; q8m

2
)

∞

20



As above, it can be seen that if this equals a term in (1.9) for some value of k, one must have

1

3
m(−2m+ 12r + 1) = 2m2 − (2k − 1)m,

or r =
1

6
(−3k + 4m+ 1),

or k =
1

3
(1 + 4m)− 2r.

It is an easy check that in the interval of r-values under consideration, m(−2m + 12r + 1)/3 <
m(14m− 12r − 1)/3, which is why this smaller integer appears in the first equation. The smallest
integer greater than (2m − 1)/12 is (2m + 8)/12 and the largest integer less than (8m − 1)/12
is (8m − 4)/12, and if the set of integers (2m + 8)/12 ≤ r ≤ (8m − 4)/12 are substituted into
the formula for k above, one gets all the odd positive integers from 1 to m − 1 inclusive. Upon
substituting the value for r in the second equation above into (4.2), one gets the k-th term in the
sum at (1.9) ((−1)k+ϵ = −1, since k is odd and ϵ = 0). Thus, this time the part of the sum at (4.1)
corresponding to (2m − 1)/12 < r < (8m − 1)/12 is equal to the part of the sum at (1.9) over all
odd k in the interval [1,m− 1].

Finally (in the case of m ≡ −1 (mod 3)), for the interval (8m − 1)/12 < r ≤ m − 1, both
m(2m− 12r − 1)/3 and 2m(8m− 12r − 1)/3 are negative (hence 2m(4m+ 12r + 1)/3 > 8m2), so
s = 2 and

t1 =
1

3
m(2m− 12r − 1) + 4m2, t2 =

2

3
m(4m+ 12r + 1)− 8m2,

so L = 6m2 − 12mr −m+ 6r2 + r, and the r-th term in (4.1) becomes

(4.3) q6m
2−12mr−m+6r2+r

×
(
qm(14m−12r−1)/3, qm(−2m+12r+1)/3, q4m

2
; q4m

2
)
∞

(
q2m(20m−12r−1)/3, q2m(−8m+12r+1)/3; q8m

2
)
∞
.

In this r-interval m(14m− 12r− 1)/3 < m(−2m+12r+1)/3, so that if the term at (4.3) equals a
term in (1.9) for some value of k, one must have

1

3
m(14m− 12r − 1) = 2m2 − (2k − 1)m,

or r =
1

6
(3k + 4m− 2),

or k = 2r − 2

3
(2m− 1).

The smallest integer greater than (8m − 1)/12 is (8m + 8)/12 so that if the set of integers (8m +
8)/12 ≤ r ≤ m− 1 are substituted into the formula for k above, one gets the even positive integers
in the interval [2, 2(m− 2)/3].

Note that this set of integers complements the even integers in [2(m + 1)/3,m] from the first
r-interval 0 ≤ r < (2m − 1)/12 to give all even integers k in the interval [2,m]. This in turn
complements the set of odd integers k in the interval [1,m−1] from the middle interval (2m−1)/12 <
r < (8m− 1)/12 to give all integers k in the interval [1,m].

If one makes the substitution r = (3k + 4m − 2)/6 in (4.3) (noting that (−1)k+ϵ = 1, since k
is even and ϵ = 0) one gets the k-th term in (1.9) (a somewhat tedious check possibly most easily
accomplished using a computer algebra system) so that taking into consideration the remarks in
the previous paragraph, one finally has that the right side of (4.1) equals the right side of (1.9),
thus completing the proof in the case m ≡ −1 (mod 3).
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The case m ≡ 1 (mod 3) is similar, so we sketch the outline of the proof and omit the details. If
the substitutions p = 4 and j = 1 are made in (2.14), one gets

(4.4) (q; q)∞ =
m−1∑
r=0

qr(6r+1)
(
qm(2m+12r+1)/3, qm(10m−12r−1)/3, q4m

2
; q4m

2
)

∞

×
(
q2m(8m+12r+1)/3, q2m(4m−12r−1)/3; q8m

2
)

∞.

This time the exponents that can be negative for some values of r are m(10m − 12r − 1)/3 and
2m(4m− 12r − 1)/3. The intervals where none, one or both of these are negative are

0 ≤ r <
4m− 1

12
,

4m− 1

12
< r <

10m− 1

12
,

10m− 1

12
< r ≤ m− 1.

For these three intervals, respectively, one takes (t1, t2) to be the ordered pair(
1

3
m(2m+ 12r + 1),

2

3
m(8m+ 12r + 1)

)
,(

1

3
m(2m+ 12r + 1),

2

3
m(8m+ 12r + 1)− 8m2

)
,(

1

3
m(2m+ 12r + 1)− 4m2,

2

3
m(8m+ 12r + 1)− 8m2

)
.

For these three intervals, respectively, one solves the equations

1

3
m(2m+ 12r + 1) = 2m2 − (2k − 1)m,

1

3
m(10m− 12r − 1) = 2m2 − (2k − 1)m,

1

3
m(−10m+ 12r + 1) = 2m2 − (2k − 1)m.

The sets of k-values, respectively, corresponding to each of these r-intervals, respectively, are

k ∈
[
1,

2m+ 1

3

]
, k odd,

k ∈ [2,m] , k even,

k ∈
[
2m+ 7

3
,m− 1

]
, k odd.

Note that the three collections of k-values above once again include exactly all the integers k in
the interval [1,m]. Upon following through the steps as in the m ≡ −1 (mod 3) case, one similarly
finds that the right side of (4.4) equals the right side of (1.9), thus completing the proof in the case
m ≡ 1 (mod 3). □

As an implication of Theorem 1.3, we next give an explicit determination of the sign of the
coefficients in the series expansion of (q; q)∞/(qm; qm)∞ for m = 2n and show that the pattern of
signs is periodic modulo m.

Corollary 4.1. Let n be a positive integer and set m = 2n. Define the sequence {dn} by

(4.5)
(q; q)∞

(qm; qm)∞
=:

∞∑
n=0

djq
j .

Then the signs of the dj are periodic with period m, i.e. djdj+m ≥ 0 for all j ≥ 0. Moreover, the
sign of dj may be determined explicitly as subsequently described.
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Define

S = {6v2 + 3v|v = 0, 1, . . . ,m/2− 1} (mod m).

For odd n,

(4.6) dj

{
≤ 0, if

(
j − 2m2+1

3

)
(mod m) ∈ S

≥ 0, otherwise.

For even n,

(4.7) dj

{
≥ 0, if

(
j − 2m2+1

3

)
(mod m) ∈ S

≤ 0, otherwise.

Proof. The m-dissection of (q; q)∞/(qm; qm)∞ follows from (1.9), and it is clear that no component
is identically zero. Also each component has the form (see (1.9) for the meaning of the notation)

(−1)k+ϵqck
(q2(2k−1)m, q8m

2−2(2k−1)m; q8m
2
)∞(q2m

2−(2k−1)m, q2m
2+(2k−1)m, q4m

2
; q4m

2
)∞

(qm; qm)∞

= (−1)k+ϵqck
1∏

u∈T (q
um; q8m2)∞

,

where

T = {1, 2, . . . 8m}\{2(2k−1), 2m−(2k−1), 2m+(2k−1), 6m−(2k−1), 6m+(2k−1), 8m−2(2k−1)}.

It is clear that all coefficients in the series expansion of the second infinite product have positive
sign, thus that the coefficients in each component of the m-dissection all have the same sign, which
is completely determined by (−1)k+ϵ (so sign(dck) = sign(dmt+ck)= (−1)k+ϵ for all t ≥ 0). This
shows the claimed m-periodicity of the pattern of signs. What remains is to show how to determine
whether (−1)k+ϵ is positive or negative from the value of ck. We first consider when n is odd (so
ϵ = 0 and (−1)k+ϵ = (−1)k), so that from (1.10)

ck = P

(
2m− 1

3
− (k − 1)

)
=

3k2

2
− 2km− 3k

2
+

2m2

3
+m+

1

3

=⇒ ck −
2m2 + 1

3
≡ 3k(k − 1)

2
(mod m)

=⇒ ck −
2m2 + 1

3
≡ 6u2 + 3u (mod m), if k = 2u+ 1,

=⇒
(
ck −

2m2 + 1

3

)
(mod m) ∈ S if k is odd, or (−1)k = −1

=⇒
(
ck −

2m2 + 1

3

)
(mod m) ∈ S if sign(dck)= −1.

If k = 2v, some v, 0 ≤ v ≤ m/2 − 1, then 3k(k − 1)/2 = 6v2 − 3v and it is an easy check that
(ck − (2m2 + 1)/3) (mod m) = 6v2 − 3v (mod m) ̸∈ S, proving the claim for n odd.

The case for n even is similar, except this time ϵ = 1 and (−1)k+ϵ = (−1)k+1. Slightly curiously,
P ((2m−1)/3−(k−1)) = P (−(2m−2)/3+(k−1)) symbolically, and the argument follows through
almost exactly the same, except the conclusion is(

ck −
2m2 + 1

3

)
(mod m) ∈ S ⇐⇒ sign(dck) = 1,

since we are working with (−1)k+1 instead of (−1)k. □
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We shall see more on sign patterns of the coefficients of infinite products in Section 5.
The expansion at (1.9) also implies various partition theoretic results, which we illustrate with

an example.

Example 5. Set m = 8 (or n = 3) in (1.9) to get

(q; q)∞ =(
q40, q216, q256; q256

)
∞
(
q176, q336; q512

)
∞ − q

(
q56, q200, q256; q256

)
∞
(
q144, q368; q512

)
∞

− q2
(
q24, q232, q256; q256

)
∞
(
q208, q304; q512

)
∞ − q35

(
q120, q136, q256; q256

)
∞
(
q16, q496; q512

)
∞

− q12
(
q88, q168, q256; q256

)
∞
(
q80, q432; q512

)
∞ + q5

(
q72, q184, q256; q256

)
∞
(
q112, q400; q512

)
∞

+ q22
(
q104, q152, q256; q256

)
∞
(
q48, q464; q512

)
∞ + q7

(
q8, q248, q256; q256

)
∞
(
q240, q272; q512

)
∞.

Let S be the set of positive integers containing no multiples of 8, so that dividing both sides of the
above equation by (q8; q8)∞, one gets on the left side

(q; q)∞
(q8; q8)∞

=

∞∑
n=0

DS(n)q
n.

After splitting the series into eight sub-series
∑∞

n=0DS(8n+ r)q8n+r, r = 0, 1, . . . 7, equating each
with the corresponding component on the right side, cancelling qr each side, and then making the
replacement q → q1/8 on each side, one gets

∞∑
n=0

DS(8n)q
n =

(
q5, q27, q32; q32

)
∞
(
q22, q42; q64

)
∞

(q; q)∞
,

∞∑
n=0

DS(8n+ 1)qn = −
(
q7, q25, q32; q32

)
∞
(
q18, q46; q64

)
∞

(q; q)∞
,

∞∑
n=0

DS(8n+ 2)qn = −
(
q3, q29, q32; q32

)
∞
(
q26, q38; q64

)
∞

(q; q)∞
,

∞∑
n=0

DS(8n+ 3)qn = −q4
(
q15, q17, q32; q32

)
∞
(
q2, q62; q64

)
∞

(q; q)∞
,

∞∑
n=0

DS(8n+ 4)qn = −q

(
q11, q21, q32; q32

)
∞
(
q10, q54; q64

)
∞

(q; q)∞
,

∞∑
n=0

DS(8n+ 5)qn =

(
q9, q23, q32; q32

)
∞
(
q14, q50; q64

)
∞

(q; q)∞
,

∞∑
n=0

DS(8n+ 6)qn = q2
(
q13, q19, q32; q32

)
∞
(
q6, q58; q64

)
∞

(q; q)∞
,

∞∑
n=0

DS(8n+ 7)qn =

(
q, q31, q32; q32

)
∞
(
q30, q34; q64

)
∞

(q; q)∞
.

Each of these equations gives rise to a family of partition identities. For an odd integer a, 1 ≤ a ≤
15, Pa,32(n) is defined by (3.2) to equal the number of partitions of n into parts ̸≡ ±a, 0 (mod 32),
̸≡ 32−2a, 32+2a (mod 64). If we interpret the q-products on the right side of each equation above
as the generating function for a type of restricted partition function, these identities imply

DS(8n) = P5,32(n) DS(8n+ 1) = −P7,32(n) DS(8n+ 2) = −P3,32(n)
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DS(8n+ 3) = P15,32(n− 4) DS(8n+ 4) = −P11,32(n− 1) DS(8n+ 5) = P9,32(n)

DS(8n+ 6) = P13,32(n− 2) DS(8n+ 7) = P1,32(n)

To give a numerical example, 87 = 8(10) + 7 has 32424 partitions into an even number of distinct
parts from S and 32412 partitions into an odd number of distinct parts from S. Thus DS(87) =
32424− 32412 = 12, in agreement with P1,32(10) = 12. This can be verified by listing the partitions
counted by P1,32(10). In the case of n = 10, these are simply partitions with no part equal to 1:

10 8 + 2 7 + 3 6 + 4 6 + 2 + 2 5 + 5 5 + 3 + 2

4 + 4 + 2 4 + 3 + 3 4 + 2 + 2 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2.

5. Periodicity of sign changes in the series expansions of some other infinite
products

In the introduction, it is noted that the m-dissection identity can be used to study the pattern of
signs of the coefficients of infinite products, and Theorem 1.4 is displayed as a noteworthy example.
Corollary 4.1 in Section 4 provides another notable consequence.

In this section we shall prove Theorem 1.4 and give some similar results for some other infinite
products. Before that, we restate Theorem 1.4 for the convenience of the reader.

Theorem 1.4. Let p > 3 be a prime. For k ≥ 1, write

(q2
k−1

; q2
k−1

)∞
(qp; qp)2∞

=
∞∑
n=0

anq
n.

Then

(1) if p ≡ 1 (mod 3), one has that

an



> 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 0 ≤ r < 4(2p+1)−6
24 or 4(5p+1)−6

24 < r ≤ p− 1,

and n ≥ L(r, k),
= 0 if n ̸≡ 3 · 2kr2 + 2k−1r (mod p),

< 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 4(2p+1)−6
24 < r < 4(5p+1)−6

24 ,

and n ≥ L(r, k),

(2) if p ≡ −1 (mod 3), one has that

an



> 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 0 ≤ r < 4(p+1)−6
24 or 4(4p+1)−6

24 < r ≤ p− 1,

and n ≥ L(r, k),
= 0 if n ̸≡ 3 · 2kr2 + 2k−1r (mod p),

< 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 4(p+1)−6
24 < r < 4(4p+1)−6

24 ,

and n ≥ L(r, k),

where L(r, k) is defined by

t1 = t1(r) = 2k+1p(p+ (6r − 1))/6 + p (mod 2k+1p2),

t2 = t2(r) = 2k+1p2 + 2kp+ 2k+1(p+ (6r − 1))p/3 (mod 2k+2p2),

L(r, k) = 7 · 2k−1p2

6
+

1

2
t1

(
t1

2k+1p2
− 1

)
+

1

2
t2

(
t2

2k+2p2
− 1

)
− 2k

48
.

Remark 4. One shall see from the proof of Theorem 1.4 that in either case, the first and last
sub-cases of r are mutually exclusive.

25



Proof. As the proofs of both cases are similar, we only present the proof of the case of p ≡ 1
(mod 3). In Theorem 2.4, set j = 2k−1, M = 2k+1 and m = p ≡ 1 (mod 3), p a prime, to get(

q2
k−1

, q2
k+1−2k−1

, q2
k+1

; q2
k+1
)
∞

(
q2

k+1−2·2k−1
, q2

k+1+2·2k−1
; q2

k+2
)
∞

= (q2
k−1

; q2
k−1

)∞

=

p−1∑
r=0

(−1)s(r)qL(r)(qt1(r), q2
k+1p2−t1(r), q2

k+1p2 ; q2
k+1p2)∞(qt2(r), q2

k+2p2−t2(r); q2
k+2p2)∞,

with

t1 = t1(r) = 2k+1p(p+ (6r − 1))/6 + p (mod 2k+1p2),

t2 = t2(r) = 2k+1p2 + 2kp+ 2k+1(p+ (6r − 1))p/3 (mod 2k+2p2),

L(r) = 7 · 2k−1p2

6
+

1

2
t1

(
t1

2k+1p2
− 1

)
+

1

2
t2

(
t2

2k+2p2
− 1

)
− 2k

48
,

and

s(r) =


0, if 0 ≤ r < 4(2p+1)−6

24 ,

1, if 4(2p+1)−6
24 < r < 4(5p+1)−6

24 ,

2, if r > 4(5p+1)−6
24 ,

so that

(q; q)∞
(qp; qp)∞

=

p−1∑
r=0

(−1)s(r)qL(r)
(qt1(r), q2

k+1p2−t1(r), q2
k+1p2 ; q2

k+1p2)∞(qt2(r), q2
k+2p2−t2(r); q2

k+2p2)∞
(qp; qp)∞

.

Notice that

(qt1(r), q2
k+1p2−t1(r), q2

k+1p2 ; q2
k+1p2)∞(qt2(r), q2

k+2p2−t2(r); q2
k+2p2)∞

(qp; qp)∞
=

∏
1≤ℓ≤2k+2p

ℓ̸∈S(r)

1

(qpℓ; q2k+2p2)∞

has coefficients all nonnegative, where

S(r) =
{
2k+1p, 2k+2p, t1/p, (2

k+1p2 ± t1)/p, (2
k+2p2 − t1)/p, t2/p, (2

k+2p2 − t2)/p
}
.

Next, it is not hard to see that

L(r) ≡ 3 · 2kr2 + 2k−1r (mod p),

so that the terms of the form qn with n ≡ x (mod p) are involved only if x ≡ 3 · 2kr2 + 2k−1r
(mod p). In other words, an = 0 if n ̸≡ 3 · 2kr2 + 2k−1r (mod p). Finally, it remains to show

that for 4(2p+1)−6
24 < r < 4(5p+1)−6

24 , and 0 ≤ r′ ≤ p − 1, L(r′) ≡ L(r) (mod p) if and only

if 4(2p+1)−6
24 < r′ < 4(5p+1)−6

24 . By examining the residue of L(r) modulo p, one can see that
L(r′) ≡ L(r) (mod p) if and only if

3 · 2kr2 + 2k−1r ≡ 3 · 2kr′2 + 2k−1r′ (mod p)

if and only if

r = r′ or r′ ≡ −r − 1

6
(mod p).
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Since p ≡ 1 (mod 6) (equivalently, p ≡ 1 (mod 3)), suppose that p = 6k + 1, so that −1
6 ≡ k

(mod p), and k = p−1
6 . Then by the assumption 4(2p+1)−6

24 < r < 4(5p+1)−6
24 , one can deduce that

4(2p+ 1)− 6

24
< r′ = p− r +

p− 1

6
<

4(5p+ 1)− 6

24
,

as desired. Hence, whenever n ≡ 6r2 + r (mod p) with 4(2p+1)−6
24 < r < 4(5p+1)−6

24 , (−1)s(r) = −1,

and thus an ≤ 0, as well as whenever n ≡ 6r2 + r (mod p) with 0 ≤ r < 4(2p+1)−6
24 or 4(5p+1)−6

24 <

r ≤ p− 1, (−1)s(r) = 1, and thus an ≥ 0. Finally, since

(qt1(r), q2
k+1p2−t1(r), q2

k+1p2 ; q2
k+1p2)∞(qt2(r), q2

k+2p2−t2(r); q2
k+2p2)∞

(qp; qp)2∞

=
∏

1≤ℓ≤2k+2p
ℓ̸∈S(r)

1

(qpℓ; q2k+2p2)∞

∞∏
n=2

1

(1− qpn)

(
1

1− qp

)

=

(
1 +

∞∑
n=1

bnq
n

)
(1 + qp + q2p + q3p + · · · ),

with bn ≥ 0, we conclude that the coefficient of the term qpk in the expansion is at least 1, so the
conclusions hold for n = L(r) + pk with k ≥ 0. □

Remark 5. The condition n ≥ L(r, k) is necessary. In fact, there are primes p and integers n such
that n ≡ 6r2 + r (mod p) but an = 0. For example, for p = 19 and n = 3 ≡ 6 · 52 + 5 (mod 19),

one can find that a3 = 0 in the expansion of (q;q)∞
(q19;q19)2∞

.

Besides Corollary 1.1, another interesting result that can be inferred from Theorem 1.4 is the

density of the zero coefficients in the expansion of (q2
k−1

;q2
k−1

)∞
(qp;qp)2∞

.

Corollary 5.1. For any positive integer k and any prime p > 3, write

(q2
k−1

; q2
k−1

)∞
(qp; qp)2∞

=
∞∑
n=0

anq
n.

Then

lim
X→∞

|{n ≤ X : an = 0}|
X

=
p− 1

2p
,

and thus, the infinite product is never lacunary.

Proof. By Theorem 1.4, one can see that

{n ≤ X : an = 0} = {n ≤ X : n ̸≡ 3 · 2kr2 + 2k−1r (mod p)}

=

{
n ≤ X :

(
22k−2 + 3 · 2k+2n

p

)
= −1

}
.

It is straightforward to show that for p > 3, there are exactly p−1
2 elements n of Z/pZ such that(

22k−2+3·2k+2n
p

)
= −1, and the conclusion follows. □

As a byproduct of the proof of Theorem 1.4, one can also say something about the sign periodicity

of the coefficients of (q2
k−1

; q2
k−1

)∞/(qp; qp)∞.
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Theorem 5.1. Write
(q2

k−1
; q2

k−1
)∞

(qp; qp)∞
=

∞∑
n=0

anq
n.

Then

(1) if p ≡ 1 (mod 3), one has that

an


≥ 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 0 ≤ r < 4(2p+1)−6

24 or 4(5p+1)−6
24 < r ≤ p− 1,

= 0 if n ̸≡ 3 · 2kr2 + 2k−1r (mod p),

≤ 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 4(2p+1)−6
24 < r < 4(5p+1)−6

24 ,

(2) if p ≡ −1 (mod 3), one has that

an


≥ 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 0 ≤ r < 4(p+1)−6

24 or 4(4p+1)−6
24 < r ≤ p− 1,

= 0 if n ̸≡ 3 · 2kr2 + 2k−1r (mod p),

≤ 0 if n ≡ 3 · 2kr2 + 2k−1r (mod p) with 4(p+1)−6
24 < r < 4(4p+1)−6

24 ,

and thus, in either case one always has that anan+p ≥ 0.

The next result is an extension of some recent work of Bringmann et al. [2, Theorem 1.3], which

concerns the infinite products (q;q)∞(q2;q2)2k∞
(q4;q4)2k+1

∞
for k ≥ 1.

Theorem 5.2. For a positive integer k, write

(q; q)∞(q2; q2)2k∞
(q4; q4)2k+1

∞
=

∞∑
n=0

cnq
n.

Then

cn

{
≥ 0 if n ≡ 0, 3 (mod 4),

≤ 0 if n ≡ 1, 2 (mod 4).

In particular, when k = 1, both inequalities are strict, and the resulting conclusion recovers a recent
result of Bringmann et al. [2, Theorem 1.3]: for

(q; q)∞(q2; q2)2∞
(q4; q4)3∞

=
∞∑
n=0

cnq
n,

one has that

cn

{
> 0 if n ≡ 0, 3 (mod 4),

< 0 if n ≡ 1, 2 (mod 4).

Proof. Take m = 2 in Theorem 1.3 to get

(q; q)∞ = A0(q)− qA1(q),

where

A0(q) = (q12, q20; q32)∞(q2, q14, q16; q16)∞,

A1(q) = (q4, q28; q32)∞(q6, q10, q16; q16)∞,

and also take m = 22 to get

(q; q)∞ = B0(q)− qB1(q)− q2B2(q) + q7B3(q),

where

B0(q) = (q40, q88; q128)∞(q12, q52, q64; q64)∞,
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B1(q) = (q56, q72; q128)∞(q4, q60, q64; q64)∞,

B2(q) = (q24, q104; q128)∞(q20, q44, q64; q64)∞,

B3(q) = (q8, q120; q128)∞(q28, q36, q64; q64)∞.

Then one can deduce that

(q2;q2)2k∞ =
2k∑

m=0

(
2k

m

)
A0(q

2)2k−m
(
−q2A1(q

2)
)m

=

k∑
m=0

(
2k

2m

)
q4mA0(q

2)2k−2mA1(q
2)2m − q2

k−1∑
m=0

(
2k

2m+ 1

)
q4mA0(q

2)2k−(2m+1)A1(q
2)2m+1,

and subsequently find that

(q; q)∞(q2; q2)2k∞

=
(
B0(q)− qB1(q)− q2B2(q) + q7B3(q)

)
×

(
k∑

m=0

(
2k

2m

)
q4mA0(q

2)2k−2mA1(q
2)2m − q2

k−1∑
m=0

(
2k

2m+ 1

)
q4mA0(q

2)2k−(2m+1)A1(q
2)2m+1

)

=

(
k∑

m=0

(
2k

2m

)
q4mA0(q

2)2k−2mA1(q
2)2mB0(q)

+q4
k−1∑
m=0

(
2k

2m+ 1

)
q4mA0(q

2)2k−(2m+1)A1(q
2)2m+1

)

− q

(
k∑

m=0

(
2k

2m

)
q4mA0(q

2)2k−2mA1(q
2)2mB1(q)

+q8
k−1∑
m=0

(
2k

2m+ 1

)
q4mA0(q

2)2k−(2m+1)A1(q
2)2m+1B3(q)

)

− q2

(
k−1∑
m=0

(
2k

2m+ 1

)
q4mA0(q

2)2k−(2m+1)A1(q
2)2m+1B0(q)

+
k∑

m=0

(
2k

2m

)
q4mA0(q

2)2k−2mA1(q
2)2mB2(q)

)

+ q3

(
q4

k∑
m=0

(
2k

2m

)
q4mA0(q

2)2k−2mA1(q
2)2mB3(q)

+

k−1∑
m=0

(
2k

2m+ 1

)
q4mA0(q

2)2k−(2m+1)A1(q
2)2m+1B2(q)

)
.

The conclusion follows from this dissection together with the simple fact that the coefficients of

A0(q
2)2k−mA1(q

2)mBi(q)

(q4; q4)2k+1
∞

are all non-negative.
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Finally, in the case of k = 1, one has that

(q; q)∞(q2; q2)2∞ =
(
B0(q)− qB1(q)− q2B2(q) + q7B3(q)

) (
A0(q

2)− q2A1(q
2)
)2

=
(
2q4A0(q

2)A1(q
2)B2(q) + q4A1(q

2)2B0(q) +A0(q
2)2B0(q)

)
− q

(
A0(q

2)2B1(q) + q4A1(q
2)2B1(q) + 2q8A0(q

2)A1(q
2)B3(q)

)
− q2

(
A0(q

2)2B2(q) + 2A0(q
2)A1(q

2)B0(q) + q4A1(q
2)2B2(q)

)
+ q3

(
q8A1(q

2)2B3(q) + q4A0(q
2)2B3(q) + 2A0(q

2)A1(q
2)B1(q)

)
.

Note that for i = 0, 1, 2, 3 and any n ≥ 0, the coefficients of q4n in

A0(q
2)A1(q

2)Bi(q)

(q4; q4)3∞

are all at least 1. Together with this observation and the above dissection for (q; q)∞(q2; q2)2∞, it
follows that the conclusion holds for n ≥ 9. Verifying the remaining finitely many cases completes
the proof. □

6. Concluding Remarks

The initial impetus for the present work was the investigation of a certain type of partition
identity. This in turn led us to the main result of this paper, which was the m-dissection of the
general quintuple product Q(z, q) for m relatively prime to 3 stated in Theorem 1.1.

We have shown that thism-dissection has a number of interesting implications. These include the
extension of the result of Evans [4], Ramanathan [9] and Berndt [1] concerning the m-dissection
of (q; q)∞ in terms of quintuple products. Our work extended the result from odd m relatively
prime to 3 to include even m relatively prime to 3. Theorem 1.1 also allowed us to give a proof
of Hirschhorn’s conjecture concerning the 2n-dissection of (q; q)∞. Upon specializing Q(z, q) to
Q(qj , qM ) for various integers j and M , we were led to a number of interesting partition identities.
Similar specializations led to explicit statements concerning the pattern of sign changes of the
coefficients in the series expansions of various eta quotients.

We hope that these discoveries may be useful to other investigators and lead to other relevant
problems, for example, is there a combinatorial proof for the partition identity

DS(mn+ r) = (−1)sbm(n)

given in Theorem 1.2? We conclude by remarking that it might be intriguing to find combinatorial
proofs of some of the partition identities in the present paper (see the remark following Theorem 1.2
for an outline of a possible general strategy for proving such identities). This can be a topic for
future investigation.
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