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Abstract

When non-trivial local structures are present in a topological space X,
a common approach to characterizing the isomorphism type of the n-th
homotopy group 7,(X,zo) is to consider the image of 7, (X, zo) in the
n-th Cech homotopy group 7, (X, zo) under the canonical homomorphism
W, o (X, 20) = 7n (X, z0). The subgroup ker(¥,) is the obstruction to
this tactic as it consists of precisely those elements of 7, (X, xo), which
cannot be detected by polyhedral approximations to X. In this paper,
we use higher dimensional analogues of Spanier groups to characterize
ker(¥,). In particular, we prove that if X is paracompact, Hausdorff,
and UV™ ! then ker(¥,) is equal to the n-th Spanier group of X. We
also use the perspective of higher Spanier groups to generalize a theo-
rem of Kozlowski-Segal, which gives conditions ensuring that ¥, is an
isomorphism.

1 Introduction

When non-trivial local structures are present in a topological space, a common
approach to characterizing the isomorphism type of 7, (X, 2¢) is to consider the
image of 7, (X, o) in the n-th Cech (shape) homotopy group 7, (X, zo) under
the canonical homomorphism ¥,, : 7,(X,z0) — 7, (X,x0). The n-th shape
kernel ker(W,,) is the obstruction to this tactic as it consists of precisely those
elements of 7, (X, zg), which cannot be detected by polyhedral approximations
to X. This method has proved successful in many situations for both the fun-
damental group [5], [T, 15} I7] and higher homotopy groups [3] 12, [13] T4l 21].
In this paper, we study the map ¥,, and give a characterization the n-th shape
kernel in terms of higher-dimensional analogues of Spanier groups.

The subgroups of fundamental groups, which are now commonly referred
to as “Spanier groups,” first appeared in E.H. Spanier’s unique approach to
covering space theory [30]. If % is an open cover of a topological space X and
xg € X, then the Spanier group with respect to % is the subgroup Wlsp(%, xg) of
71 (X, 7o) generated by path-conjugates [a][y][] ' where « is a path starting
at o and « is a loop based at «(1) with image in some element of 7. These



subgroups are particularly relevant to covering space theory since, when X is
locally path-connected, a subgroup H < 71'1 (X, x0) corresponds to a covering
map p : (Y,y0) — (X, z0) if and only if 7T1 (% zg) < H for some open cover
% [30, 2.5.12]. The intersection 7,7 (X, xo) = Ny 7P (U ,10) is called the
Spanier group of (X, xo) [16]. The inclusion 77 (X, z0) < ker(\Ill) always holds
[18, Prop. 4.8]. It is proved in [, Theorem 6.1] that " (X, zo) = ker(¥;)
whenever X is paracompact Hausdorff and locally path connected. The upshot
of this equality is having a description of level-wise generators (for each open
cover % ) whereas there may be no readily available generating set for the kernel
of a homomorphism induced by a canonical map from X to the nerve |N(%)|.
Indeed, 1-dimensional Spanier groups have proved useful in persistence theory
[32]. Since much of applied topology is based on a geometric refinement of
polyhedral approximation from shape theory, there seems potential for higher
dimensional analogues to be useful as well.

Higher dimensional analogues of Spanier groups recently appeared in [I] and
are defined in a similar way: 75P(% , ) is the subgroup of 7, (X, x¢) consisting
of homotopy classes of path-conjugates « * f where « is a path starting at xg
and f : S™ — X is based at a(l) with image in some element of %/. Then

79P(X, xg) is the intersection of these subgroups. In this paper we prove a
higher-dimensional analogue of the 1-dimensional equality 757 (X, z) = ker(¥;)
from [4].

A space X is UV™ if for every neighborhood U of a point = € X, there is
a neighborhood V of x in U such that every map f : S¥ - V, 0 < k < n
is null-homotopic in U, c.f. [29]. When a space is UV™ “small” maps on
spheres of dimension < n contract by null-homotopies of relatively the same
size. Certainly, every locally n-connected space is UV". However, when n > 1,
the converse is not true even for metrizable spaces. Our main result is the
following.

Theorem 1.1. Letn > 1 and 9 € X. If X is paracompact, Hausdorff, and
UVn=1 then m3P(X,z0) = ker(¥,,).

This result confirms that higher Spanier groups, like their 1-dimensional
counterparts, often identify precisely those elements of 7, (X, zo) which can be
detected by polyhedral approximations to X. A first countable path-connected
space is UV if and only if it is locally path connected. Hence, in dimension
n = 1, Theorem only expands [4, Theorem 6.1] to some non-first countable
spaces.

Regarding the proof of Theorem the inclusion 75P(X,z0) € ker(¥,,)
was first proved for n = 1 in [I8, Prop. 4.8] and for n > 2 in [I, Theorem
4.14). We include this proof for the sake of completion (Lemma [3.11)). The
proof of the inclusion ker(V¥,,) € 75P(X, o) appears in Section [5| and is more
intricate, requiring a carefully chosen sequence of open cover refinements using
the UV™ ! property. These refinements allow one to recursively extend maps
on simplicial complexes skeleton-wise. These extension methods, established in
Section |4} are similar to methods found in [22] 23].



We also put these extension methods to work in Section [6] where we identify
conditions that imply ¥, is an isomorphism. In [23], Kozlowski-Segal prove
that if X is paracompact Hausdorff and UV™, then ¥,, is an isomorphism. In
[18], Fischer and Zastrow generalize this result in dimension n = 1 by replacing
“UV1 with “locally path connected and semilocally simply connected.” Simi-
lar, to the approach of Fischer-Zastrow, our use of Spanier groups shows that
the existence of small null-homotopies of small maps S™ — X (specifically in
dimension n) is not necessary to prove that ¥,, is injective. We say a space X
is semilocally T, -trivial if for every © € X there exists an open neighborhood
U of = such that every map S™ — U is null-homotopic in X. This definition is
independent of lower dimensions but certainly UV"™ = (UV"~! and semilocally
Tp-trivial). Our secondary result is the following.

Theorem 1.2. Letn > 1 and g € X. If X is paracompact, Hausdorff, UV~ 1,
and semilocally 7, -trivial, then U, : 7, (X, x0) — Tn(X, zo) is an isomorphism.

The hypotheses in Theorem are the homotopical versions of the hypothe-
ses used in [25] to ensure that the canonical homomorphism ¢, : H,(X) —
H,(X) is an isomorphism, see also [I0] regarding the surjectivity of p4. Al-
though we have only weakened the hypothesis of the Kozlowksi-Segal result in
dimension n, Theorem [1.2| formally generalizes the results of both [I8] and [22]
and does apply to some spaces of interest, namely spaces involving cones over (or
attached to) wild spaces (see Examples and . Examples also show that
U, can fail to be an isomorphism if X is semilocally m,-trivial but not UV"~!
(Example or if X is UV™~! but not semilocally m,-trivial (Example [7.5)).

2 Preliminaries and Notation

Throughout this paper, X is assumed to be a path-connected topological space
with basepoint zg. The unit interval is denoted I and S™ is the unit n-sphere
with basepoint dyp = (1,0,...,0). The n-th homotopy group of (X,zo) is de-
noted 7, (X, xo). If f: (X, z0) — (Y,y0) is a based map, then fu : m, (X, zo) —
(Y, 90) is the induced homomorphism.

A path in a space X is a map « : I — X from the unit interval. The
reverse of « is the path given by a~(t) = «(1 —t) and the concatenation of
two paths «, 8 with «(1) = 8(0) is denoted « - 5. Similarly, if f,g: 5™ - X
are maps based at x € X, then f - g denotes the usual n-loop concatenation
and f~ denotes the reverse map. We may write [ ", f; to denote an m-fold
concatenation f1 - fo - -+ - fin.

2.1 Simplicial complexes

We make heavy use of standard notation and theory of abstract and geometric
simplicial complexes, which can be found in texts such as [26] and [28]. We
briefly recall relevant notation.



If K is an abstract or geometric simplicial complex and r > 0 is an integer,
K, denotes the r-skeleton of K. If K is abstract, |K| denotes the geometric
realization of K. If K is geometric, then sd”* K denotes the m-th barycentric
subdivision of K and if v is a vertex of K, then st(v, K) denotes the open
star of the vertex v. When L € K is a subcomplex, sd”™ L is a subcomplex of
sd™K. If 0 = {vg,v1,...,v,} is an r-simplex of K, then [vg, vy, ..., v,] denotes
the r-simplex of |K| with the indicated orientation.

We frequently make use of the standard n-simplex A,, in R™ spanned by the
origin dy and standard unit vectors. Since the boundary 0A,, = A, = (A,)n—1
is homeomorphic to S®~!, we fix a based homeomorphism 0A, = S"~! that
allows us to represent elements of 7, (X, z¢) by maps (0A,+1,do) — (X, x0).

2.2 The Cech expansion and shape homotopy groups

We now recall the construction of the first shape homotopy group 71 (X, zg) via
the Cech expansion. For more details, see [26].

Let O(X) be the set of open covers of X direct by refinement; we write
U < ¥ when ¥ refines % . Similarly, let O(X,zy) be the set of open covers
with a distinguished element containing the basepoint, i.e. the set of pairs
(% ,Uy) where % € O(X), Uy € %, and zy € Uy. We say (¥,V;) refines
(%,Ug) if 7% <¥ and V) € U,.

The nerve of a cover (% ,Uy) € O(X,xzq) is the abstract simplicial complex
N (%) whose vertex set is N(%)o = % and vertices Ay, ..., A, € % span an
n-simplex if ﬂ?:o A; # . The vertex Uy is taken to be the basepoint of
the geometric realization |N(%)|. Whenever (¥, V;) refines (%,Up), we can
construct a simplicial map py v : N(¥) — N(%) , called a projection, given by
sending a vertex V € N(¥) to a vertex U € % such that V < U. In particular,
Vo must be sent to Uy. Any such assignment of vertices extends linearly to a
simplicial map. Moreover, the induced map |pa v | : |N(¥)| — |N(% )| is unique
up to based homotopy. Thus the homomorphism py yx : i (|N(¥)|, Vo) —
T (|N(%)|,Up) induced on fundamental groups is (up to coherent isomorphism)
independent of the choice of simplicial map.

Recall that an open cover % of X is normal if it admits a partition of
unity subordinated to %. Let A be the subset of O(X,zg) (also directed by
refinement) consisting of pairs (% ,Uy) where % is a normal open cover of X
and such that there is a partition of unity {¢y}yes subordinated to % with
ou, (zo) = 1. Tt is well-known that every open cover of a paracompact Hausdorff
space X is normal. Moreover, if (% ,Uy) € O(X, xp), it is easy to refine (%, Up)
to a cover (¥,Vp) such that Vj is the only element of ¥ containing zy and
therefore (¥',Vy) € A. Thus, for paracompact Hausdorff X, A is cofinal in
O(X, {IT(]) .

The n-th shape homotopy group is the inverse limit
Tn (X, 20) = Im (m (IN (%), Uo), par v, A) -

This group is also referred to as the n-th Cech homotopy group.



Given an open cover (% ,Uy) € O(X,xp), a map py : X — |[N(%)| is a
(based) canonical map if p,) (st(U,N(%))) € U for each U € % and py (z) =
Up. Such a canonical map is guaranteed to exist if (%,Up) € A: find a locally
finite partition of unity {¢y}ves subordinated to % such that ¢y, (xg) = 1.
When U € % and x € U, determine pg (z) by requiring its barycentric coor-
dinate belonging to the vertex U of |[N(%)| to be ¢y(x). According to this
construction, the requirement ¢y, (xo) = 1 gives pg (zo) = Up.

A canonical map py is unique up to based homotopy and whenever (¥, Vp)
refines (%,Up); the compositions pyy o py and pgy are homotopic as based
maps. Hence, for n > 1, the homomorphisms pa, 4 : 7, (X, zo) — mp ([N(% )|, Up)
satisfy ps v 4 opyu = py . These homomorphisms induce the following canon-
ical homomorphism to the limit, which is natural in X:

W 2 (X, 0) — Tn (X, o) given by W ([f]) = ([p2 © f])

The subgroup ker(¥,,), which we refer to as the n-th shape kernel is, in a
sense, a rough algebraic measure of the n-dimensional homotopical information
lost when approximating X by polyhedra. Specifically, [f] € 7, (X, zo)\ ker(¥,,)
if and only if there exists some polyhedron K and map p : (X,xz¢) — (K, ko)
such that px([f]) # 0 in m,(K, ko). Of utmost important is the situation
when ker(¥,,) = 1. In this case, 7m,(X,zo) can be understood as a subgroup
of (X, xp), that is, the n-th shape group retains all the data in the n-th
homotopy group of X. A space for which ker(¥,) = 1 is said to be m,-shape
mjective.

3 Higher Spanier Groups

To define higher Spanier groups as in [I], we briefly recall the action of the fun-
damental groupoid on the higher homotopy groups of a space. Fix a retraction
R:S"xI— S"x{0}u{do}xI. Given amap f: (5™, dy) — (X,y) and a path
a: I — X with a(0) =z and «(1) = y, define F': S™ x {0} U {dp} x I — X so
that g(x,0) = f(x) and f(do,t) = (1 —t). The the path-conjugate of f by « is
the map a = f: (S™,dp) — (X, z) given by a = f(z) = F o R(z,0).

Path-conjugation defines the basepoint-change isomorphism ¢, : 7,(X,y) —
(X, 2), pa([f]) = [a* f]. In particular, [a * f][a s g] = [a = (f - g)] and if
[a] = [B], then [a = f] = [B = f]. Note that when n =1, f: S — X is a loop
andaxf~a-f-a .

Definition 3.1. Let n > 1 and « : (I,0) — (X,xz0) be a path and U be an
open neighborhood of (1) in X. Define

[a] ¥ mn (U) = {la* f] € (X, 20) | F(S™) € U}

Since [a # f]la * g] = [ = (f - ¢)], the set [a] * m,(U) is a subgroup of
7Tn<X, (Eo).



Definition 3.2. Let n > 1, % be an open cover of X, and x¢9 € X. The
n-th Spanier group of (X, xo) with respect to % is the subgroup 75P(%,x)
of m,(X,x0) generated by the subgroups [«] # 7, (U) for all pairs (o, U) with
a(l)e U and U € . In short:

TP (U x0) = a] # mp(U) | U € %, (1) € U)
The n-th Spanier group of (X, xo) is the intersection

7P(X, xg) = ﬂ TP (U | xo).
UeO(X)

Remark 3.3. We note that our definition of n-th Spanier group is the “un-
based” definition from [I]; see also [16] for more on “based” Spanier groups,
which is defined using covers of X by pointed open sets. The two notions agree
for locally path connected spaces. When n = 1, Spanier groups (absolute and
relative to a cover) are normal subgroups of m (X, zg). Certainly, the same is
true for n > 2 since higher homotopy groups are abelian. In the case n = 1,
Spanier groups have been studied heavily due to their relationship to covering
space theory [30].

Remark 3.4 (Functorality). If f : (X,z9) — (Y,yo) is a map and ¥ is an
open cover of Y, then % = {f~Y(V) | V € ¥} is an open cover of X such
that fu(m(%,20)) S 7n(¥,y0). It follows that fu(m2P(X,20)) S 7P (Y, 90)-
Thus (f#)|ﬂ3p(x’z0) : (X, wo) — wIP(Y,y0) is well-defined showing that
77 : Topy — Grp and 757 : Top; — Ab, n > 2, are functors [I, Theo-
rem 4.2]. Moreover, if g : (Y,y0) — (X, z0) is a based homotopy inverse of f,
then (f#)|7r5p(X)I0) and (g#)|ﬂ§p(y7y0) are inverse isomorphisms. Hence, these
functors descend to functors hTopy, — Grp and hTop, — Ab on the based
homotopy category.

Remark 3.5 (Basepoint invariance). Suppose zg,z1 € X and f: I — X is
a path from 1 to o, and @g : (X, z0) — (X, 21), ©s(lg]) = [8 = g] is
the basepoint-change isomorphism. If [a % f] is a generator of 75P(%,xo),
then pg([a = f]) = [(B - @) = f] is a generator of m5P(%,x1). It follows

that ¢g(mSP(% ,x0)) = m5P(% ,x1). Moreover, in the absolute case, we have
p(mP(X, m0)) = m5P(X,z1). In particular, changing the basepoint of X does

not change the isomorphism type of the n-th Spanier group, particularly whether
it is trivial or not.

In terms of our choice of generators, a generic element of 5P (%, ) is a
product [\, [a; * f;] where each map f; : S — X has an image in some open
set U; € % (see Figure|l). The next lemma identifies how such products might
actually appear in practice and motivates the proof of our key technical Lemma
below (Lemma [5.1). Recall that (sd™A,,+1)y is the union of the boundaries of
the (n + 1)-simplices in the m-th barycentric subdivision sd™A,, ;1.



Figure 1: An element of 7T§ P(9 ,x0), which is a product of three path-conjugate
generators [a; * f;].

Lemma 3.6. Ifm,n € N, % is an open cover of X, and [ : ((sd™Api1)n,do) —
(X, 20) is a map such that for every (n + 1)-simplex o of sd" A, 1, we have
f(00) S U for some U € %, then fu(mn((sd"Api1)n,do)) S TP (%, x0).

Proof. The case n = 1 is proved in [4]. Suppose n = 2 and set K = sd™A,, ;1.
Theset # = {f~1(U) | U € %} is an open cover of K,, such that fy (757 (¥ ,do))
7P (% ,x0) and for every (n+1)-simplex o in K, we have do < f~(U) for some
U € %. Thus it suffices to prove 5P (# ,dy) = 7n(Kn,do). Let S be the set
of n-simplices of K. Since n > 2, K, is simply connected. Standard simpli-
cial homology arguments give that the reduced singular homology groups of
K, are trivial in dimension < n and H,(K,) is finitely generated free abelian
generated. A set of free generators for H,(K,) can be chosen by fixing the
homology class of a simplicial map ¢, : 0A, 11 — K, that sends 0A, ;1 home-
omorphically onto the boundary of an (n + 1)-simplex of ¢ € S. Thus K, is
(n — 1)-connected and the Hurewicz homomorphism h : 7 (K, dy) — Hy(K,)
is an isomorphism for all 1 < k < n. In particular, let p, : I — K,, be any path
from dy to g»(dp). Then 7, (K,,dy) is freely generated by the path-conjugates
[Ps * go], 0 € S. By assumption, for every o € S, [p, * g,] is a generator of
woP(W ,dy). Since T5P(# ,dy) contains all the generators of m,(K,,dp), the
equality 5P (W, do) = mn (K, do) follows. O

To characterize the triviality of relative Spanier groups, we establish the
following terminology.

Definition 3.7. Let n > 0. We say a space X is
(1) semilocally mp-trivial at x € X if there exists an open neighborhood U of
X such that every map S™ — U is null-homotopic in X.
(2) semilocally n-connected at x € X if there exists an open neighborhood U
of X such that every map S*¥ — X, 0 < k < n is null-homotopic in X.



We say X is semilocally 7, -trivial (resp. semilocally n-connected) if it has this
property at all of its points.

It is straightforward to see that X is semilocally n-connected at x € X if
and only if X is semilocally m-trivial for all 0 < k < n.

Remark 3.8. Note that a space X is semilocally m,-trivial if and only if X
admits an open cover % such that 75P(% , x) is trivial [T, Theorem 3.7]. More-
over, X is semilocally n-connected if and only if X admits an open cover %
such that 727 (%, xo) is trivial for all 1 < k < n.

Attempting a proof of Theorem one should not expect the groups
TOP(% ,x0) and ker(psy 4) to agree “on the nose.” Indeed, the following ex-
ample shows that we should not expect the equality 7P (%, xo) = ker(pa 4) to
hold even in the “nicest” local circumstances.

Example 3.9. Let X = S? v S? and W be a contractible neighborhood of
do in S?. Set Uy = S? v W and Uy = W v S? and consider the open cover
U = {U1,Us} of X. Then wgp(?/, xg) = Z? is freely generated by the homotopy
classes of the two inclusions i1,iz : S2 — X. However, m3(X) = Z2 is freely
generated by [i1], [i2], and the Whitehead product [i1,i2]. However |N(%)|
is a 1-simplex and is therefore contractible. Thus ker(ps 4) is equal to m3(X)
and contains [[i1, i2]. Even though the spaces X, U, U, are locally contractible
and the elements of % are l-connected, 75P(% ,xg) is a proper subgroup of
ker(pg ). One can view this failure as the result of two facts: (1) The sets U;
are not 2-connected and (2) the definition of Spanier group does not allow one
to generate homotopy classes by taking Whitehead products of maps S? — U;
in the neighboring elements of % .

First, we show the inclusion 75P(X,z¢) < ker(¥,,) holds in full general-
ity. Recall the intersections 5P (X, zg) = Naeox) 7P (U ,x0) and ker(¥,,) =
ﬂ(%,UO)E A ker(pa 4 ) are formally indexed by different sets.

Lemma 3.10. For every open cover % of X and canonical map py : X —
IN(%)|, there exists a refinement % <V such that wP(V,x0) S ker(pa 4) in
7Tn(X, Z,Co).

Proof. Let % € O(X). The stars st(U,|N(%)|), U € % form an open cover
of [IN(%)| and therefore ¥ = {p (st(U,|N(%)|)) | U € %} is an open cover
of X. Since py is a canonical map, we have p.,' (st(U,|N(%)|)) < U for all
Ue . Thus ¥ is a refinement of %. A generator of m5P(¥,z¢) is of the form
[ * f] for amap f: S™ — p,!(st(U,|N(%)|)). However, py o f has image in
the contractible open set st(U, |N(%)|) and is therefore null-homotopic. Thus
pa#([a* f]) = 0. We conclude that py 4 (7P (7, x0)) = 0. O

Corollary 3.11. [1, Theorem 4.14] Let n = 1. For any based space (X, xq), we
have m5P(X, o) < ker(¥,,).



Proof. Suppose [f] € m5P(X,x). Given anormal, based open cover (%, Up) € A
and any canonical map py : X — |N(% )|, Lemma ensures we can find a
refinement % < ¥ such that 757 (7, x0) < ker(pa 4). Thus [f] € 73P(¥, x0)
ker(pa #), which shows that [f] € ker(¥,,). O

Example 3.12 (higher earring spaces). An important space, which we will call
upon repeatedly for examples, is the n-dimensional earring space

En = | J{xeR"""||x—(1/4,0,0,...,0)] = 1/5},

jeN

which is a shrinking wedge (one-point union) of n-spheres with basepoint by =
(0,0,...,0). It is known that E,, is (n — 1)-connected, locally (n — 1)-connected,
and m,-shape injective for all n > 1 [27, [12]. However, E,, is not semilocally
Tp-trivial. Thus 75P(% ,by) # 0 for any open cover % of E,, even though “in
the limit” 757(I,,, by) is trivial.

Example 3.13. Let n > 3 and notice that E; v E,, is not semilocally ;-
connected (since it has E; as a retract) and therefore fails to be semilocally
(n — 1)-connected. However, it has recently been shown that m;(Eq v E,) =0
for 2 < k <n—1 and that E; v E, is m,-shape injective [3]. Thus E; v E,, is
semilocally mj-trivial for all k < n — 1 except k = 1 and 7P (E; v E,,, bo) = 0.
Thus the failure to be semilocally n-connected can occur at single dimension
less than n.

4 Recursive Extension Lemmas

Toward a proof of the inclusion ker(¥,) < 75P(X,zq), we introduce some
convenient notation and definitions. If % is an open cover and A < X,
then St(A, %) = U{U € % | AnU # J}. Note that if A < B, then
St(A, %) < St(B,%). Also if % < ¥, then St(A,¥) < St(A,% ). We take the
following terminology from [33].

Definition 4.1. Let Z,¥ € O(X).
(1) We say ¥ is a barycentric-star refinement of % if for every © € X, we
have St(x, ) € U for some U € % . We write % <4 V.
(2) Wesay 7 is a star refinement of % if for every V € ¥, we have St(V, ¥) <
U for some U € % . We write % <. V.

Note that if Z <, ¥V <4, W, then % <.+ ¥ .

Lemma 4.2. [31] A T} space X is paracompact if and only if for every open
cover % of X there exists an open cover ¥ such that % < V.

Definition 4.3. [29] Let n € {0,1,2,3,...,00}. A space X isUV™ at z € X and
every neighborhood U of z, there exists a neighborhood V' of z such that V< U
and such that for all 0 < k < n (k < w0 if n = o0), every map [ : 0Ap41 — V
extends to a map g : Agr1 — U. Wesay X is UV™ if X is UV™ at all of its
points.



We have the following evident implications for both the point-wise and global
properties:

X is locally n-connected = X is UV" = X is semilocally n-connected

For first countable spaces, the UV™ property is equivalent to the “n-tame”
property in [3] defined in terms of shrinking sequences of maps.

Remark 4.4. In much of the Shape Theory literature, the UV™ property is
referred to as the “LC™ property” [26, p. 40]. This is sometimes confused
with local n-connectedness in which one has a basis of n-connected open sets.
Since the two are not equivalent even for Peano continua, we prefer the “UV™”
terminology.

Definition 4.5. Suppose < ¥ in O(X).

(1) Wesay ¥ is an n-refinement of % , and write Z <™ ¥, ifforall 1 < k < n,
Ve ¥, and maps f: 0Ary 1 — V), there exists U € % with V € U and a
continuous extension g : Ag11 — U of f.

(2) We say ¥ is an n-barycentric-star refinement of %, and write % <3 ¥,
if for every 0 < k < n, for every x € X, and every map f : 0011 —
St(xz,¥), there exists U € % with St(x,¥") € U and a continuous exten-
sion g : Agt1 — U of f.

Note that if Z <™ ¥ (resp. # <} V'), then % <k (resp. % ﬁi ¥) for
al0 <k <n.

Lemma 4.6. Suppose X is paracompact, Hausdorff, and UV™. For every % €
O(X), there exists ¥ € O(X) such that % <3} V.

Proof. Let % € O(X). Since X is UV™, for every U € % and x € U, there
exists an open neighborhood W (U, x) such that W (U, z) < U and such that for
all 1 <k < n,each map f: 0Ag 1 — W(U,z) extends to amap g: Ap1 — U.
Let # = {W(U,x) |U € %,z € U} and note <™ # . Since X is paracompact
Hausdorff, by Lemma there exists ¥ € O(X) such that # <, 7.

Fix 2/ € X. Then St(z/,%) <€ W(U,x) for some x € U € %. Then
St(a’,¥) <€ U. Moreover, if 1 < k < n and f : 0Ar1 — St(2/,?) is a
map, then since f has image in W(U, z), there is an extension g : A1 — U.
This verifies that Z <, 7. O

For the next two lemmas, we fix n € N, a geometric simplicial complex K
consisting of (n + 1)-simplices and their faces, and a subcomplex L € K with
dim(L) < n. Let M[k] = L u K}, denote the union of L and the k-skeleton of
K. Since L € K,,, M[n] = K, is the union of the boundaries of the (n + 1)-
simplices of K. Later we will consider the cases where (1) K = sd™A,,+1 and
L =sdm0A,+1 and (2) K =sd™0A,+2 and L = {dy}.

Lemma 4.7 (Recursive Extensions). Suppose 1 < k <n, % <, ¥ <71y,
meN, and f: M[k—1] — X is a map such that for every n + 1-simplex o
of K, we have f(o n M[k —1]) € W, for some W, € #'. Then there exists a

continuous extension g : M[k] — X of f such that for every (n + 1)-simplex o
of K, we have g(c n M[k]) € U, for some U, € % .
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Proof. Supposing the hypothesis, we must extend f to the k-simplices of M[k]
that do not lie in L. Let 7 be a k-simplex of M[k] that does not lie in L and
let S, be the set of (n + 1)-simplices in K that contain 7. By assumption,
S; is non-empty. We make some general observations first. Since f maps the
(k — 1)-skeleton of each (n + 1)-simplex o € S, into W, and d7 lies in this
(k — 1)-skeleton, we have f(01) <) W,. Thus, for all 7, we have

o€eS

for)y < ) St(We, 7).

o€eS,

Fix a vertex v, of 7 and let ; = f(v;). Then z, € W, < St(x,,#)
whenever o € S;. Since ¥ <571 #, we may find V; € ¥ such that St(z., #) <
V; and such that every map 0A, — St(z,, #') extends to a map Ax — V;. In
particular, f|s; : 01 — W, extends to a map 7 — V.. We define g : M[k] - X
so that it agrees with f on M[k — 1] and so that the restriction of g to 7 is a
choice of continuous extension 7 — V. of f|s,.

We now choose the sets U,. Fix an (n+ 1)-simplex o of K. If the k-skeleton
of o lies entirely in L, we choose any U, € % satisfying W, < U,. Suppose there
exists at least one k-simplex in ¢ not in L. Then whenever 7 is a k-simplex of o
not in L, we have W, < St(z,, #) € V,. Fix a point y, € W,. The assumption
that % <, ¥ implies that there exists U, € % such that St(y,,?) < U,. In
this case, we have W, € V. € U, whenever 7 is a k-simplex of ¢ not in L.

Finally, we check that g satisfies the desired property. Again, fix an (n + 1)-
simplex ¢ of K. If 7 is a k-simplex of o not in L, our definition of g gives
g(t) €V, € U,. If 7 is a k-simplex in o n L, then g(7') = f(7') € W, < U,.
Overall, this shows that g(o n M[k]) € U, for each (n + 1)-simplex o of K. 0O

A direct, recursive application of the previous lemma is given in the following
statement.

Lemma 4.8. Suppose there is a sequence of open covers
U =Wy <4 Vo <" Wy < G W <4 o <, < WU W =W

and a map fo : M[0] — X such that for every (n + 1)-simplex o of K, we
have fo(o n M[0]) € W for some W € #'. Then there exists an extension
fn @ M[n] = X of fo such that for every (n + 1)-simplex o of K, we have
fn(0o) €U for some U e %.

5 A proof of Theorem [1.1

We apply the extension results of the previous section in the case where K =
sd™A, 41 for some m € N and L = sd™0A,, 41 so that M[k] = L U K}, consists
of the boundary of A, 1 and the k-simplices of sd™ A, 11 not in the bound-
ary. Note that M|[n] is the union of the boundaries of the (n + 1)-simplices of
sd"ﬂﬁn+1.
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Lemma 5.1. Let n > 1. Suppose X is paracompact, Hausdorff, and UV"™~1,
Then for every open cover % of X, there exists (¥, V) € A such thatker(pyx) €
WSP(%a 'rO)'

Proof. Suppose % € O(X). Since X is paracompact, Hausdorff, and UV"~1,
we may apply Lemmas .2 and [£.6] to first find a sequence of refinements :

U = Uy <4 Vg <V Uy <4 <2 Uy <4 Vo <L U <4 N < U

and then one last refinement % <y, % = 7. Let Vj € ¥ be any set containing
xo and recall that since X is paracompact Hausdorff (¥, V;) € A. We will show
that ker(pyx) S 75P(% , o). Note that p,' (st(V,N(#))) € V for some choice
of canonical map py .

Suppose [f] € ker(py4) is represented by a map f : (|0A,41],do) — (X, zo).
We will show that [f] € 75P(%,x0). Then py o f : [0An1] — |N(¥)
is null-homotopic and extends to a map h : [A,11] — [N(¥)|. Set Yy =
h=t(st(V,N(¥))) so that & = {Yy, | V € ¥} is an open cover of |A,;1].

We find a particular simplicial approximation for h using the cover % [28]
Theorem 16.1]: let A be a Lebesgue number for % so that any subset of A, 11
of diameter less than A lies in some element of #°. Find m € N such that each
simplex in sd™A,, ;1 has diameter less than A/2. Thus the star st(a,sd™ A, ;1) of
each vertex a in sd™A,, 1 lies in a set Yy, € % for some V,, € ¥'. The assignment
a — V, on vertices extends to a simplicial approximation b’ : sd™A,, 11 — N(¥)
of h, i.e. a simplicial map A’ such that

h(st(a,sd™ A, 41)) € st(h'(a), N(¥)) = st(V,, N(¥))

for each vertex a [28, Lemma 14.1].

Let K =sd™A,41 and L = sd™0A, 41 so that M[k] = L u K. First, we
extend f: L — X toamap fo: M[0] - X. For each vertex a in K, pick a point
fo(a) € V. In particular, if a € L, take fy(a) = f(a). This choice is well defined
since on boundary vertices a € L since we have py o f(a) = h(a) € st(V,, |N(¥)|)
and thus f(a) € py,' (st(Va, |N(¥]))) € V.

Note that k' maps every simplex o = [ag, a1, ...,a;] of K to the simplex of
N(7) spanned by {h'(a;) | 0 <i <k} ={V,, | 0 <i < k}. By definition of the
nerve, we have ({Va, | 0 <i < k} # . Pick a point z, € [|{V,, | 0 <i < k}.

By our initial choice of refinements, we have % <, ¥. lf 0 = [ag, a1, ..., an41]
is an (n+ 1)-simplex of K, then St(z,,?) < U, for some U, € % . In particular
{fola)) |0<i<n+1} | JHVa, |0 <i<n+1} €U, Thus fo maps the
0-skeleton of o into U,. If 1 < k < n, 7 is a k-face of o n L with a; € 7, then
py © fo(int(7)) = py o f(int(7)) = h(int(7)) < h(st(a;, K)) < st(Va,, [N (¥)]).
It follows that

fo(m) € pt (st(Va,, IN(P)])) € Vi, € U,

Thus for every n-simplex in 0 n L, we have fo(7) € U,. We conclude that for
every (n + 1)-simplex o of K, we have fo(o n M[0]) < U,.

By our choice of sequence of refinements, we are precisely in the situation
to apply Lemma Doing so, we obtain an extension f, : M[n] - X of f
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such that for every (n + 1)-simplex o of K, we have f,(do) < U, for some
U, € %, = % . By Lemma we have [f] = [fnloa,..] € T5P(% , x0). O

Finally, both inclusions have been established and provide a proof of our
main result.

Proof of Theorem[1.1, The inclusion m5P (X, z¢) < ker(¥,) holds in general by
Corollary Under the given hypotheses, the inclusion ker(¥,,) € 757 (X, x)
follows from Lemma [5.1] O

When considering examples relevant to Theorem (1.1} it is helpful to compare
mr-shape injectivity with the following weaker property from [19].

Definition 5.2. We say a space X is n-homotopically Hausdorff at x € X if no
non-trivial element of 7, (X, x) has a representing map in every neighborhood
of x. We say X is n-homotopically Hausdorff if it is n-homotopically Hausdorff
at all of its points.

Clearly, m,-shape injectivity = n-homotopically Hausdorff. The next exam-
ple, which highlights the effectiveness of Theorem shows the converse is not
true even for UV"~! Peano continua.

Example 5.3. Fix n > 2 and let ¢; : S™ — E, be the inclusion of the j-th
sphere and define f : E,, — E, to be the shift map given by fo/; = £;;1. Let
M; = E, x[0,1]/~, (2,0) ~ (f(x),1) be the mapping torus of f. We identify
E,, with the image of E,, x {0} in My and take by to be the basepoint of M.
Let o : I — M/ be the loop where «a(t) is the image of (by,t). Then M; is
locally contractible at all points other than those in the image of o. Also, every
point «(t) has a neighborhood that deformation retracts onto a homeomorphic
copy of E,,. Thus, since E,, is UV™ !, so is X. It follows from Theorem
that 5P (My,by) = ker(m, (Mg, bg) — #n(My,by)). In particular, the Spanier
group of M contains all elements [a*  g] where g : S® — E,, is a based map
and k € Z. Using the universal covering map £ — My that “unwinds” o and
the relation [g] = [ * (f 0 ¢)] in m, (M, bo), it is not hard to show that these
are, in fact, the only elements of the n-th Spanier group. Hence

ker(ﬂn(va bO) - frn(Mf,bo)) = {[ak * g] ‘ [9] € Wn(Env bO)}7

which is an uncountable subgroup.

It follows from this description that, even though M/ is not m,-shape in-
jective, My is n-homotopically Hausdorff. Indeed, it suffices to check this
at the points a(t), t € I. We give the argument for «(0) = by, the other
points are similar. If 0 # h € m, (M, by) has a representative in every neigh-
borhood of by in My, then clearly h € ker(¥,). Hence, h = [af % g] for
[9] € mn(En,bo). Since M; retracts onto the circle parameterized by of, the
hypothesis on h can only hold if & = 0. However, there is a basis of neighbor-
hoods of by in My that deformation retract onto an open neighborhood of by
in E,,. Thus [¢] has a representative in every neighborhood of by in 7, (E,, by),
giving h = [g] € ker(m,(Ey, bo) — T (En, bo)) = 0.
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It is an important feature of Example that My is not simply connected
and has multiple points at which it is not semilocally 7, -trivial. This motivates
the following application of Theorem which identifies a partial converse of
the implication m,-shape injective = n-homotopically Hausdorff.

Corollary 5.4. Let n > 2 and X be a simply-connected, UV™ ™1, compact
Hausdorff space such that X fails to be semilocally n-trivial only at a single point
x € X. Then every element g € ker(¥,,) is represented by a map with image in
every neighborhood of x. In particular, if X is n-homotopically Hausdorff at x,
then X is m,-shape injective.

Proof. According to Remark we may take x to be the basepoint of X. Let
0 # g € ker(¥,,). By Theorem g € m5P(X, x). Since X is compact Hausdorff,
we may replace O(X) by the cofinal sub-directed order Op(X) consisting of
finite open covers % of X with the property that there is a unique Wy, € %
with 2 € Wy, . For each % € Op(X), we can write g = [ [\ [oa i * fa ;] where
fa i S™ — Uy ; is a non-null-homotopic map for some Uy, ; € % .

Let V' be an open neighborhood of x. We check that g is represented by a
map with image in V. Since X is UV? at x, there exists an open neighborhood
V' of x such that any two points of VV/ may be connected by a path in V. Now,
we fix % € Op(X) such that Wy, < V'. Then Wy < V' whenever ¥ € Op(X)
refines %.

We claim that for sufficiently refined 7/, all of the maps fy ; have image in
V’. Suppose, to obtain a contradiction, there is a subset T' € {¥ € Op(X) |
Uy < ¥}, which is cofinal in Op(X) and such that for every ¥ € T there exists
iv € {1,2,...,my} such that Im(fy ;,) € V’. Find yy ,, € S™ such that
vy (v iy) € Uy \V' € Uy ;\Wy,. Since X is compact, we may replace T’
with a cofinal directed subset so that the net {fy ;, (Y., )}ver converges to
a point y € X. Let Y be an open neighborhood of y in X. Find %) € Op(X)
such that there exists a unique neighborhood Vy € 74 with y € V; and which
also satisfies Vo = Y. Then Uy, ;,, = Vo € Y. Moreover, if ¥ € T refines
%, then Im(fy;,) € Uy, S Vo €Y. However, for every ¥, fy,;, is not
null-homotopic in X. Thus, since Y represents an arbitrary neighborhood of
y, X is not semilocally m,-trivial at y. By assumption, we must have x = y.
Since {fy i, (Y i, )}wer converges to x, the same argument where V' replaces
Y shows that Im(fy ;,) < V' for sufficiently refined ¥ € T'; a contradiction.
Since the claim is proved, there exists %y < % in Op(X) such that whenever
% <V, we have Im(fy ;) € V' forallie {1,2,...,my}.

Fix a refinement ¥ of %4 in Op(X). For all i € {1,2,...,my}, we may find
a path By ; : I — V from = to fy ;(dy). Since g is simply connected, we have
lawy i # far i) = [By,i* fa i) for all i. Thus g is represented by [[;" By i * fv 4,
which has image in V. O

Remark 5.5 (Topologies on homotopy groups). Given a group G and a collec-
tion of subgroups {N; | j € J} of G such that for all j, j' € J, there exists k € J
such that N, © N,; n N, we can generate a topology on G by taking the set
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{gN; | j € J,g € G} of left cosets as a basis. We can apply this to both the col-
lection of Spanier subgroups 5P (% , o) and the collection of kernels ker(pa 4 )
to define two natural topologies on 7, (X, x¢).

(1) The Spanier topology on 7, (X, o) is generated by the left cosets of Spanier
groups m, (% ,xq) for % € O(X).

(2) The shape topology on m, (X, xo) is generated by left cosets of the kernels
ker(pa 4) where (% ,Up) € A. Equivalently, the shape topology is the ini-
tial topology with respect to the map ¥,, where the groups m, ([N (% )|, Up)
are given the discrete topology and 7, (X, xg) is given the inverse limit
topology.

Lemma [3.10| ensures the Spanier topology is always finer than the shape topol-
ogy. Lemmal5.1] then implies that, whenever X is paracompact, Hausdorff, and
UV~ the two topologies agree. Moreover, 7, (X, x¢) is Hausdorff in the shape
topology if and only if X is m,-shape injective.

6 When is ¥,, an isomorphism?

It is a result of Kozlowski-Segal [23] that if X is paracompact Hausdorff and
Uv™, then ¥, : 7,(X,2) — 7,(X,z) is an isomorphism. This result was
first proved for compact metric spaces in [24]. The assumption that X is UV™
assumes that small maps S™ — X may be contracted by small null-homotopies.
However, if E,, is the n-dimensional earring space, then the cone CE,, is UV}
but not UV™. However, CE,, is contractible and so ¥, is clearly an isomorphism
of trivial groups. Certainly, many other examples in this range exist. Our
Spanier group-based approach allows us to generalize Kozlowksi-Segal’s theorem
in a way that includes this example by removing the need for “small” homotopies
in dimension n. For simplicity, we will sometimes suppress the pointedness of
open covers and simply write % for elements of A.

Lemma 6.1. Let n > 1. Suppose that X is paracompact, Hausdorff, and
UV If ([f])wen € 71(X, x0), then for every % € A, there exists [g] €
T (X, @) such that (pa )4 ([9]) = [fa]-

Proof. With (% ,Uy) € A and pg fixed, consider a representing map fy :
(10Ans1 1, do) — (IN(%)],Us). Let %' = {p, (st(U, IN(Z)])) | U € %} Since
po, (st(U,|N(%)])) € U for all U € %, we have % < %'. Applying Lemmas
and we can choose the following sequence of refinements of %’. First,
we choose a star refinement %’ <., # so that for every W € #, there exists
U’ € %' such that St(W,#) < U’. In this case, we can choose the projection
map py oy : |[N(#)| — |[N(%')| so that if pyw (W) = U’ on vertices, then
St(W,#') € U’ in X. This choice will be important near the end of the proof.

To construct g, we must take further refinements. First, we choose a sequence
of a refinements

W =Wy <u Vp <2V Wq <y oo <2 Wo <y Vo <4 Wh < V1 <0 Wp
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followed by one last refinement #) <, %, = ¥. Let Vy € ¥ be any set containing
xo and recall that since X is paracompact Hausdorff (¥,V;) € A. For some
choice of canonical map py, we have p,'(st(V, N(#))) € V for all V e 7.

Recall that we have assumed the existence of a map fy : (0A,11,dp) —
(IN(#)|, Vo) such that pyvg([f+]) = [fal Set Yy = £, (st(V, N(¥))) 50
that # = {Yy | V € ¥} is an open cover of 0A, ;1. As before, we find a
simplicial approximation for f. Find m € N such that the star st(a,sd™0A,, ;1)
of each vertex a in sd™0A, 41 lies in a set Yy, € & for some V, € #. Since
fv(do) = Vo, we may take Vg, = Vp. The assignment a — V, on vertices extends
to a simplicial approximation f’:sd™0A,11 — |[N(¥)| of fy, i.e. a simplicial
map f’ such that

Fr(st(a,sd™0An 1)) < st(f'(a), IN(V)]) = st(Va, IN(¥)])

for each vertex a.

We begin to define g with the constant map {dy} — X sending dy to xz¢. In
preparation for applications of Lemma set K = sd™0A,+1 and L = {dp}
so that K[k] = Kj. First, we define a map go : M[0] — X by picking, for each
vertex a € Ky, a point go(a) € V,. In particular, set go(do) = . This choice is
well defined since we have py (x¢) = Vg € st(Vy,, N(¥)) and thus go(dp) = xg €
Py (5t(Vay, N(¥))) € Vi, Note that f' maps every simplex o = [ag, a1, ..., ay]
of K to the simplex of |[N(¥')| spanned by {V,, | 0 < i < k}. By definition of the
nerve, we have [{V,, | 0 < i < k} # . Pick a point 2, € ([{V,, | 0 <i < k}.
By our initial choice of refinements, we have % <, ¥. If 0 = [ap,a1,...,a]
is a m-simplex of K, then St(z,,?) € Uy, for some Uy, € %. In particular
{g0(a;) |0 <i<n+4+1} € U{Va, | 0 <i<n} < Uy, Thus go maps the
0-skeleton of o into Up,. If dy € o, then go(do) € p,' (st(Vay, N(¥))) € Vi, <
Uop,». Hence, for every n-simplex o of K, we have go(o n M[0]) < Up,-.

We are now in the situation to recursively apply Lemma This is similar
to the application in the proof of Lemma with the dimension n + 1 shifted
down by one so we omit the details. We obtain an extension g : K = M[n] - X
of go such that for every m-simplex o of K, we have g(o) < W, for some
WeeW =U,.

With g defined, we seek show that fo ~ pgy og. Since f' ~ fy (by simplicial
approximation), pgy v =~ py g opayw opy v (for any choice of projection maps),
and pyy o fy ~ fg (for any choice of projection psg v ), it suffices to show
that py e o pyry o pyy o f' ~ py og. We do this by proving that the
simplicial map F = poyagr 0 pgry o pypy o f' : K — |N(% )] is a simplicial
approximation for pg o g. Recall that this can be done by verifying the “star-
condition” py o g(st(a, K)) < st(F(a),|N(%)|) for any vertex a € K [28, Ch.2
§14]. Since n > 1, we have # <., ¥. Hence, just like our choice of pg ry, we
may choose pyy so that whenever py (V) = W, then St(V, %) € W. Also,
we choose pay 4,/ to map py, (st(U,|N(%)|)) — U on vertices.

Fix a vertex ag € K. To check the star-condition, we’ll check that pg og(o) <
st(F(ap), |N(%)]) for each n-simplex o having ag as a vertex. Pick an n-simplex
o = [ap,a1,...,a,] S K having ag as a vertex. Recall that f'(a;) = V,, for
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eachi. Set py v (Va,) = Wi and pgrp (W) = p3,) (st(Us, |N(%)|)) € %' for some
U, € %. Then F(a;) = U; for all i. It now suffices to check that py o g(o) <
st(Uo, IN(Z)]). Recall that by our choice of pgyry, we have St(Wy, #) <
po, (5t(Uo,|N(%)])). Thus it is enough to check that g(c) < St(Wy, #'). By
construction of g, we have g(o) € W, for some W, € #. Since g(ag) € WonW,,
we have g(o) € W, < St(Wp, #'), completing the proof. O

Finally, we prove our secondary result, Theorem

Proof of Theorem[I.2 Since X is paracompact, Hausdorff, UV"~1 we have
7P (X, z0) = ker(¥,,) by Theorem Since X is semilocally m,-trivial, we
have 75P(% , 1) = 1 for some % € A. Tt follows that ¥, is injective. More-
over, by Lemma we may find ¥ € A with ker(pyy) S 75P(%,x). Thus
pyg @ (X, 20) — mp(|N(¥)|, Vo) is injective. Let ([fo])wen € Tn(X,20).
By Lemma for each % € A, there exists [g#]| € m,(X,x0) such that
pa (97 ]) = [fo]- U ¥ < W, then we have

py#(lgv]) = [fr] =pyws(fw]) =pywsy ocpwy(gn]) = pyu(lgr])

Since py4 is injective, it follows that [gy | = [g¥] whenever ¥ < #. Setting
lg] = [g¥] gives ¥, ([g]) = ([f])wen- Hence, ¥,, is surjective. O

7 Examples

Example 7.1. Fix n > 2. When X is a metrizable UV" ! space, the cone CX
and unreduced suspension SX are UV"~! and semilocally 7,-trivial but need
not be UV™. This occurs in the case X = E, orif X =Y v E,, where Y is a
CW-complex. In such cases, ¥,, : 7,(SX) — 7,(SX) is an isomorphism. One
point unions of such cones and suspensions, e.g. CX v CY or CX v SY also
meet the hypotheses of Theorem (checking this is fairly technical [3]) but
need not be UV™.

Example 7.2. The converse of Theorem does not hold. For n > 2, E,, is
UV™ ! but is not semilocally ,-trivial at the wedgepoint zq. However, ¥,, :
Tn(En, x0) = 7n(Ep, xo) is an isomorphism where both groups are canonically
isomorphic to ZY [12]. Additionally, for the infinite direct product [[yS™,
Uy s m([[y 5™ z0) = 7([ [y S™, @o) is an isomorphism for all k& > 1 even
though [y S™ is not UVF~! when k — 1 > n.

Example 7.3. We can also modify the mapping torus My from Example
so that ¥,, becomes an isomorphism (recall that n > 2 is fixed). Let X =
My U CE, be the mapping cone of the inclusion E,, — M. For the same reason
My is UV™1 the space X is UV™~1. Moreover, if U is a neighborhood of
a(t) that deformation retracts onto a homeomorphic copy of E,,, then any map
S™ — U may be freely homotoped “around” the torus and into the cone. It
follows that X is semilocally m,-trivial. We conclude from Theorem [I.2] that
U, : mp(X) — 7, (X) is an isomorphism. Since sufficiently fine covers of X
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always give nerves homotopy equivalent to S' v S"*1 we have 7, (X, by) = 0.
Thus m,(X) = 0.

Example 7.4. Let n > 2 and X =E; v.S™ (see Figure. Note that because [Eq
is aspherical [6}, 18], X is semilocally 7,-trivial. However, X is not UV! because it
has E; as a retract. It is shown in [3] that m,(X) = D, @, ™ (5") = Dy, (5,) Z
and that U, : 7,(X) — #,(X) is injective. In particular, we may represent
elements of m,(X) as finite-support sums >5. ) ms where mg € Z. We
show that ¥, is not surjective.

Identify 71 (X) with 71(E;) and recall from [9] that we can represent the
elements of 71 (E1) as countably infinite reduced words indexed by a countable
linear order (with a countable alphabet 1, 82,83, ...). Here ; is represented
by a loop S' — E; going once around the j-th circle. Let X be the union of S™
and the largest j circles of E; so that X = LiLnj X;. Identify 71 (X;) with the free
group F; on generators (1, B2, ... 3, and note that m,(X;) = @Fj Z. Thus we
may view an element of 7, (X)) as a finite-support sums », _ F; Mw of integers
indexed over reduced words in Fj. Let dj41; : Fj41 — F} be the homomorphism
that deletes the letter 8;1. Consider the inverse limit 7, (X) = liLnj(Fj, djt1;).
The map X — X, that collapses all but the first j-circles of E; induces a
homomorphism d; : m(X) — F;. There is a canonical homomorphism ¢ :
™ (X) = 11 (X) = lim_(Fj,dj11,5) given by ¢(5) = (d1(5), d2(B), - .. ), which is

known to be injective [27] but not surjective. For example, if zj, = H?:l[ﬂl, 51,
then (z1, 22,23, %4, ...) is an element of 71 (X) not in the image of ¢.

The bonding map b;41; : T (X;1+1) — mp(X;) sends a sum ), My tO

weF; 1
ZveFj py where p, = Zdﬂlj(w):v M. Similarly, projection map b; :J7rn(X) —
Tn(X;) sends the sum Y 5. ) ng t0 X e, Mo Where my = 35 5y, mp. Let
y; € mp(X) be the sum whose only non-zero coefficient is the x;-coefficient,
which is 1. Since d;i1j(xj41) = x;, it’s clear that (yi,y2,ys3,...) € Tn(X).
Suppose Uy, (3,5 mp) = (Y1,Y2, Y3, - - - ). Writing >3 mg as a finite sum Y mg,
for non-zero mg,;, we must have Zd,v(ﬁi):zj mg, = 1 for all j € N. Since there
are only finitely many f; involved, there must exist at least one ¢ for which
d;(B;) = z; for infinitely many j. For such i, we have ¢(53;) = (x1,x2,23,...),
which, as mentioned above, is impossible. Hence ¥,, is not surjective.
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Figure 2: The one point union E; v S2.

The previous example shows why we cannot do away with the UV"~! hy-
pothesis in Theorem Since we weakened the hypothesis from [23] in di-
mension n and no hypothesis in dimension n is required for Theorem one
might suspect that we might be able to do away with the dimension n hypoth-
esis completely. The next example, which is a higher analogue of the harmonic
archipelago [2] [7, 20] shows why this is not possible.

Example 7.5. Let n > 2 and {; : S™ — E,, be the inclusion of the j-th n-sphere
in E,,. Let X be the space obtained by attaching (n + 1)-cells to E,, using the
attaching maps ¢;. Since E" is UV"~! it follows easily that X is UV"~1.
However, X is not semilocally m,-trivial at the wedgepoint xy of E". Indeed,
the infinite concatenation maps [[;_; ¢; = lk - {541+ are not null-homotopic
(using a standard argument that works for the harmonic archipelago) but are
all homotopic to each other. Thus 7, (X, ) # 0. However for sufficiently fine
open covers Z € O(X), |N(%)| is homotopy equivalent to a wedge of (n + 1)-
spheres and is therefore n-connected. Thus 7,(X,by) = 0. Thus, despite X
being UV"~! ¥, is not an isomorphism. In fact, 7,(X,z0) = 75P(X,z¢) =
ker(¥,,). The reader might also note that since E"~! is (n — 1)-connected
and 7,(E,) =~ H,(E,) = Z", X will also be (n — 1)-connected. A Meyer-
Vietoris Sequence argument similar to that in [20] can then be used to show
70 (X, 0) = H,(X) = ZN/ @ Z.
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