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The Action Potential

Above: Numerical approximation of
an action potential in the Hodgkin-
Huxley model
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Below: Numerical solution as
reported by Hodgkin and Huxley in
1952
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Source: A Quantitative Description of Membrane Current and its Application to Conduction
and Excitation in Nerve, Hodgkin & Huxley, 1952




The Cell Membrane

Cell Exterior
Higher steady-state concentration of Na*
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Source: Action Potential in the Neuron, Harvard Extension School. https://www.youtube.com/watch?v=0a6rvUJig7o




The Cell Membrane
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Source: Action Potential in the Neuron, Harvard Extension School. https://www.youtube.com/watch?v=o0a6rvUlig7o




The Hodgkin-Huxley Model

Ohm’s Law — current equals voltage times conductance

Total current is the sum of all component currents:

I=11+IZ++In

For each ionic current, I._, = conductance (g;,,,) times distance from voltage equilibrium:

d
I'=gxk(V—=Vi)+gnalV—Vno)+ g (V—-V)+ Cmd_:

av . . .
where Cma is the current from the membrane’s function as a capacitor




The Hodgkin-Huxley Model

Conductance for Na* and K* (g,, and g,) are gated by voltage

n, m, and h are proportions (0 £n, m, h < 1) that vary with voltage and define gate activation or
inactivation

Jnq Aand grare the maximum possible conductances for a given set of parameters

Ik = g_Nan4

YNa — .g_ngh

g, does not meaningfully vary with voltage, and is treated as constant




The Hodgkin-Huxley Model
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Numerical Methods

Forward Euler Method
* Fastest numerical method

* Relatively inaccurate: 1st-order accuracy

4%h-Order Runge-Kutta Method
* Increased accuracy given same parameters
* Computationally more expensive

For both methods, V, n, m, and h are solved for simultaneously within each step.




Experimental Results

Forward Euler Positive Threshold
100

. V(0)=6.60
. V(0)=6.61
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Experimental Results

Anode Break Inhibition
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Experimental Results

Constant Applied Current, 3uA
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Parareal

Coarse and Fine Propagation *A unique parallel-in-time algorithm, developed by
09 Lions, Meday, and Turinici in 2001

*Utilizes two temporal discretizations — one coarse,
one fine — and solves them numerically

*Predicts reasonable starting values, then
calculates fine mesh values in parallel

*Converges to a solution over multiple iterations

*Does not increase accuracy over sequential
method, but can offer significant time savings




Parareal

Preliminary estimations for parallelization in a 48-CPU system

10%-5 . suggest a significant possible decrease in computational time
1076 4

B 4 At 47 iterations time savings is negative compared to sequential
— . calculations, but the Parareal algorithm finishes well before

then, even for tolerances within 1/100,000,000% of a millivolt

At increased CPU counts (100, 200, etc.), iteration count seems
to fall around ~5% of maximum at this tolerance level

While computational overhead limits maximum possible time
savings, preliminary results suggest that for most real-world
scenarios increasing the CPU count will increase efficiency
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Questions?




